...
首页> 外文期刊>BMC Genomics >Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis
【24h】

Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis

机译:生理和转录组学分析揭示瘤胃产乙醇酶阿鲁米球菌7降解纤维的独特方面

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background Bacteria in the genus Ruminococcus are ubiquitous members of the mammalian gastrointestinal tract. In particular, they are important in ruminants where they digest a wide range of plant cell wall polysaccharides. For example, Ruminococcus albus 7 is a primary cellulose degrader that produces acetate usable by its bovine host. Moreover, it is one of the few organisms that ferments cellulose to form ethanol at mesophilic temperatures in vitro. The mechanism of cellulose degradation by R. albus 7 is not well-defined and is thought to involve pilin-like proteins, unique carbohydrate-binding domains, a glycocalyx, and cellulosomes. Here, we used a combination of comparative genomics, fermentation analyses, and transcriptomics to further clarify the cellulolytic and fermentative potential of R. albus 7. Results A comparison of the R. albus 7 genome sequence against the genome sequences of related bacteria that either encode or do not encode cellulosomes revealed that R. albus 7 does not encode for most canonical cellulosomal components. Fermentation analysis of R. albus 7 revealed the ability to produce ethanol and acetate on a wide range of fibrous substrates in vitro. Global transcriptomic analysis of R. albus 7 grown at identical dilution rates on cellulose and cellobiose in a chemostat showed that this bacterium, when growing on cellulose, utilizes a carbohydrate-degrading strategy that involves increased transcription of the rare carbohydrate-binding module (CBM) family 37 domain and the tryptophan biosynthetic operon. Conclusions Our data suggest that R. albus 7 does not use canonical cellulosomal components to degrade cellulose, but rather up-regulates the expression of CBM37-containing enzymes and tryptophan biosynthesis. This study contributes to a revised model of carbohydrate degradation by this key member of the rumen ecosystem.
机译:背景瘤胃球菌属中的细菌是哺乳动物胃肠道的普遍存在的成员。特别地,它们在反刍动物中很重要,在反刍动物中它们能消化多种植物细胞壁多糖。例如,阿鲁米球菌7是主要的纤维素降解剂,其产生可被其牛宿主使用的乙酸盐。此外,它是在中温温度下发酵纤维素以形成乙醇的少数生物之一。尚不知道R. albus 7降解纤维素的机制,并认为它涉及毛蛋白样蛋白,独特的碳水化合物结合结构域,糖萼和纤维素体。在这里,我们使用了比较基因组学,发酵分析和转录组学的组合,以进一步阐明白粉虱7的纤维素分解和发酵潜力。结果白粉虱7基因组序列与相关细菌基因组序列的比较或不编码纤维素小体,这表明白念珠菌7不编码大多数典型的纤维素体成分。阿氏杆菌7的发酵分析显示了在多种纤维底物上体外产生乙醇和乙酸盐的能力。对在化学恒化器中以相同稀释度在纤维素和纤维二糖上生长的白。R. 7进行的全球转录组学分析表明,该细菌在纤维素上生长时,利用了一种碳水化合物降解策略,该策略涉及增加稀有碳水化合物结合模块(CBM)的转录家族37域和色氨酸生物合成操纵子。结论我们的数据表明R. albus 7不使用规范的纤维素成分降解纤维素,而是上调含有CBM37的酶的表达和色氨酸的生物合成。这项研究有助于瘤胃生态系统中这一关键成员对碳水化合物降解的修正模型做出贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号