首页> 外文期刊>BMC Genomics >De novo transcriptome analysis and glucosinolate profiling in watercress ( Nasturtium officinale R. Br.)
【24h】

De novo transcriptome analysis and glucosinolate profiling in watercress ( Nasturtium officinale R. Br.)

机译:豆瓣菜(Nasturtium officinale R. Br。)中的从头转录组分析和芥子油苷分析

获取原文
           

摘要

Background Watercress ( Nasturtium officinale R. Br.) is an aquatic herb species that is a rich source of secondary metabolites such as glucosinolates. Among these glucosinolates, watercress contains high amounts of gluconasturtiin (2-phenethyl glucosinolate) and its hydrolysis product, 2-phennethyl isothiocyanate, which plays a role in suppressing tumor growth. However, the use of N. officinale as a source of herbal medicines is currently limited due to insufficient genomic and physiological information. Results To acquire precise information on glucosinolate biosynthesis in N. officinale , we performed a comprehensive analysis of the transcriptome and metabolome of different organs of N. officinale . Transcriptome analysis of N. officinale seedlings yielded 69,570,892 raw reads. These reads were assembled into 69,635 transcripts, 64,876 of which were annotated to transcripts in public databases. On the basis of the functional annotation of N. officinale , we identified 33 candidate genes encoding enzymes related to glucosinolate biosynthetic pathways and analyzed the expression of these genes in the leaves, stems, roots, flowers, and seeds of N. officinale . The expression of NoMYB28 and NoMYB29 , the main regulators of aliphatic glucosinolate biosynthesis, was highest in the stems, whereas the key regulators of indolic glucosinolate biosynthesis, such as NoDof1.1 , NoMYB34, NoMYB51, and NoMYB122 , were strongly expressed in the roots. Most glucosinolate biosynthetic genes were highly expressed in the flowers. HPLC analysis enabled us to detect eight glucosinolates in the different organs of N. officinale . Among these glucosinolates, the level of gluconasturtiin was considerably higher than any other glucosinolate in individual organs, and the amount of total glucosinolates was highest in the flower. Conclusions This study has enhanced our understanding of functional genomics of N. officinale , including the glucosinolate biosynthetic pathways of this plant. Ultimately, our data will be helpful for further research on watercress bio-engineering and better strategies for exploiting its anti-carcinogenic properties.
机译:背景豆瓣菜(Nasturtium officinale R. Br。)是一种水生草本植物,富含次级代谢物(如芥子油苷)。在这些芥子油苷中,豆瓣菜含有大量的葡糖芥子苷(2-苯乙基芥子油苷)及其水解产物2-苯乙基异硫氰酸酯,在抑制肿瘤生长中起作用。然而,由于基因组和生理信息不足,目前限制将新山猪笼草用作草药来源。结果为了获得有关药用芥子中芥子油苷生物合成的准确信息,我们对药用芥子中不同器官的转录组和代谢组进行了全面的分析。对山茱。幼苗的转录组分析获得了69,570,892条原始读数。这些读物被组装成69,635个笔录,其中64,876个被注释为公共数据库中的笔录。基于新山猪笼草的功能注释,我们鉴定了33个编码与芥子油苷生物合成途径相关的酶的候选基因,并分析了这些基因在新山猪笼草的叶,茎,根,花和种子中的表达。茎中脂肪族芥子油苷生物合成的主要调控因子NoMYB28和NoMYB29的表达在茎中最高,而吲哚芥子油苷生物合成的关键调控因子NoDof1.1,NoMYB34,NoMYB51和NoMYB122则在根中强烈表达。大多数芥子油苷的生物合成基因在花中高表达。 HPLC分析使我们能够在药用猪笼草的不同器官中检测到8种芥子苷。在这些芥子油苷中,芥子油苷水平明显高于单个器官中的任何其他芥子油苷,花中总芥子油苷含量最高。结论这项研究增强了我们对猪笼草功能基因组学的理解,包括该植物的芥子油苷生物合成途径。最终,我们的数据将有助于豆瓣生物工程的进一步研究,并为开发其抗癌性提供更好的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号