首页> 外文期刊>Publications of the Astronomical Society of Japan >Relativistic accretion disk winds under relativistic radiation transfer
【24h】

Relativistic accretion disk winds under relativistic radiation transfer

机译:相对论辐射传递下的相对论吸积盘风

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Relativistic accretion disk winds driven by disk radiation are numerically examined by calculating the relativistic radiative transfer equation under a plane-parallel approximation. We first solve the relativistic transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained flux, we then solve the vertical hydrodynamical equation under the central gravity, and obtain a new velocity field and the mass-loss rate as an eigenvalue. We repeat these double iteration processes until both the intensity and velocity profiles converge. We further calculate these vertical disk winds at various disk radii for appropriate boundary conditions, and obtain the mass-loss rate as a function of a disk radius for a given disk luminosity. Since in the present study we assume a vertical flow, and the rotational effect is ignored, the disk wind can marginally escape for the Eddington disk luminosity. When the disk luminosity is close to the Eddington one, the wind flow is firstly decelerated at around z ∼ r, and then accelerated to escape. For a larger disk luminosity, on the other hand, the wind flow is monotonically accelerated to infinity. Under the boundary condition that the wind terminal velocity is equal to the Keplerian speed at the disk, we find that the normalized mass-loss rate per unit area, $skew9hat{skew9dot{J}}$, is roughly expressed as $skew9hat{skew9dot{J}} sim 3 (r_{m in}/r_{m S}) Gamma _{m d} au _{m b} (r/r_{m S})^{-5/2}(1-sqrt{r_{m in}/r})$, where rin is the disk inner radius, rS is the Schwarzschild radius of the central object, Γd is the disk normalized luminosity, τb is the wind optical depth, and r is the radial distance from the center.
机译:通过在平面平行近似下计算相对论辐射传递方程,对由圆盘辐射驱动的相对论吸积盘风进行了数值检验。我们首先使用给定的速度场迭代求解相对论传递方程,并获得比强度和矩量。然后,使用获得的通量,求解中心重力下的垂直流体力学方程,并获得新的速度场和质量损失率作为特征值。我们重复这些双重迭代过程,直到强度和速度分布都收敛为止。我们还针对适当的边界条件,进一步计算了在各种圆盘半径下的这些垂直圆盘风,并获得了给定圆盘光度下随圆盘半径变化的质量损失率。由于在本研究中我们假设垂直流,并且忽略了旋转效应,因此对于爱丁顿圆盘的光度,圆盘风可以略微逸出。当圆盘的光度接近爱丁顿一号时,风流首先在z〜r处减速,然后加速逃逸。另一方面,对于较大的磁盘亮度,风流会单调加速到无穷大。在风终端速度等于圆盘处的开普勒速度的边界条件下,我们发现归一化的单位面积质量损失率是 $ skew9 hat { skew9 dot {J}} $ ,大致表示为 $ skew9 hat { skew9 dot {J}} sim 3(r _ { rm in} / r _ { rm S}) Gamma _ { rm d} tau _ { rm b}(r / r _ { rm S} )^ {-5/2}(1- sqrt {r _ { rm in} / r})$ ,其中 in 是磁盘的内半径,r S 是中心对象的Schwarzschild半径Γ d 磁盘的归一化光度τ b 是风的光学深度,r是距中心的径向距离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号