首页> 外文期刊>Journal of radiation research >Comparison of adverse effects of proton and X-ray chemoradiotherapy for esophageal cancer using an adaptive dose–volume histogram analysis
【24h】

Comparison of adverse effects of proton and X-ray chemoradiotherapy for esophageal cancer using an adaptive dose–volume histogram analysis

机译:使用适应性剂量-体积直方图分析比较质子和X射线放化疗对食管癌的不良反应

获取原文
           

摘要

Consecutive patients who underwent definitive CCRT utilizing X-rays (n = 19) or protons (n = 25) between 2009 and 2011 were enrolled in the study. Patient characteristics are shown in Table?id="xref-table-wrap-1-1" class="xref-table" href="#T1">1. The staging evaluation of each patient was done with upper GI series, CT scans, esophagogastroduodenoscopy (EGD), and positron emission tomography (PET)/CT scans. Endoscopic ultrasound was also used if the depth of invasion was unclear. The X-ray group included more advanced stage cases than the proton group. The median dose of radiation was 60 Gy in both groups. Most tumor sites were in the thoracic esophagus, and all tumors were squamous cell carcinoma. The X-ray therapy system consisted of a linear accelerator (Clinac iX, Varian Medical Systems, Palo Alto, CA, USA) equipped with a 5–10 mm multileaf collimator (MLC), a rotational treatment couch, and a treatment-planning system (Xio ver. 4.8, Elekta, Stockholm, Sweden). The PBT system consisted of a 250-MeV synchrotron equipped with an isocentric rotational gantry, a 15 × 15 cm passive scattering port with a 5-mm MLC, a rotational treatment couch, a treatment-planning system (Hitachi 3D Treatment Planning System ver. 2.0, Tokyo, Japan), a treatment-planning CT scanner, and an X-ray simulator without any system modification. The gross tumor volume (GTV) was defined as all diseased tissue seen on CT images and other diagnostic imaging. To confirm the tumor location on CT, two to three metal markers were placed in the normal esophageal wall at the tumor edges during endoscopy prior to the initial treatment planning. The initial clinical target volume (CTV1) included all areas of potential disease spread, such as the esophageal wall and mediastinal lymph nodes. For cancer of the thoracic esophagus (n = 34), the whole thoracic esophagus was included in CTV1 in most patients. The second CTV (CTV2) included the GTV with 20- to 25-mm margins in the cranial and caudal directions of the tumor and 10-mm margins in other directions. The lung contour was defined as the thoracic cavity excluding the bilateral main bronchus. The heart contour was defined as described by Feng et al. [id="xref-ref-10-1" class="xref-bibr" href="#ref-10">10]. In brief, superiorly the heart starts just inferior to the left pulmonary artery. For simplification, a round structure including the great vessels was contoured. Inferiorly, the heart blends with the diaphragm. The superior vena cava was included for simplification and consistency. Experimental PBT plans were made for patients who received X-ray therapy, using the actual planning CT. Alternatively, X-ray plans were made using the planning CT for patients who received PBT. Original CTVs and PTVs used in the actual treatment were maintained in the experimental plans. To evaluate cumulative dose and volume from different planning CTs accurately, all planning CTs and doses linked to CT images were merged using deformation techniques [id="xref-ref-12-1" class="xref-bibr" href="#ref-12">12–id="xref-ref-14-1" class="xref-bibr" href="#ref-14">14]. Data conversion and translation between systems, CT–CT deformation, and dose volume studies were performed using MIM Maestro ver. 6 (Cleveland, OH, USA). The concept of dose delivery to the target and normal tissue was exactly the same in X-ray and proton planning. Coverage of PTVs was provided by 95% of prescribed doses, and the maximum spinal dose was restricted up to 44 Gy. After summation of each X-ray and proton treatment plan, dosimetric factors such as percentage volume of whole lung, heart receiving more than a certain dose (Vx), and the mean lung dose (MLD) were calculated using DVH analysis. The experimental plans were compared with the actual treatment plans. Typical dose distributions and the total DVH for X-rays and protons are shown in Fig.?id="xref-fig-1-1" class="xref-fig" href="#F1">1. NTCP was calculated using the Lyman–Kutcher–Burman (LKB) model following Emami et al. and Burman et al. [id="xref-ref-15-1" class="xref-bibr" href="#ref-15">15–id="xref-ref-17-1" class="xref-bibr" href="#ref-17">17]: class="disp-formula" id="disp-formula-1"> class="mathjax mml-math">mml:math display="block"mml:mtextNTCP/mml:mtextmml:mo=/mml:momml:mstylemml:mrowmml:mfracmml:mn1/mml:mnmml:mrowmml:msqrtmml:mn2/mml:mnmml:mrowmml:miπ/mml:mi/mml:mrow/mml:msqrt/mml:mrow/mml:mfrac/mml:mrowmml:msubsupmml:mo∫/mml:momml:mrowmml:mo?/mml:momml:mi mathvariant="normal"∞/mml:mi/mml:mrowmml:mit/mml:mi/mml:msubsupmml:mrowmml:msupmml:mie/m
机译:连续患者在2009年至2011年间接受了X射线( n = 19)或质子( n = 25)的定性CCRT研究。患者特征显示在表中。id="xref-table-wrap-1-1" class="xref-table" href="#T1"> 1 。每位患者的分期评估均采用上消化道造影,CT扫描,食管胃十二指肠镜(EGD)和正电子发射断层扫描(PET)/ CT扫描进行。如果浸润深度不清楚,也可使用内镜超声检查。 X射线组比质子组包括更多的晚期病例。两组的平均放射剂量均为60 Gy。多数肿瘤部位在胸食管中,所有肿瘤均为鳞状细胞癌。 X射线治疗系统由线性加速器(Clinac iX,Varian Medical Systems,美国加利福尼亚州帕洛阿尔托)组成,该加速器配有5-10 mm多叶准直仪(MLC),旋转治疗床和治疗计划系统(Xio版本4.8,Elekta,斯德哥尔摩,瑞典)。 PBT系统由配备有同心旋转机架的250 MeV同步加速器,带5 mm MLC的15×15 cm被动散射端口,旋转治疗床,治疗计划系统(Hitachi 3D Treatment Planning System ver。 2.0,日本东京),治疗计划CT扫描仪和X射线模拟器,无需进行任何系统修改。肿瘤总体积(GTV)定义为在CT图像和其他诊断成像中看到的所有患病组织。为了确定肿瘤在CT上的位置,在进行初始治疗计划之前,在内窥镜检查过程中在肿瘤边缘的正常食管壁中放置2至3个金属标记。初始临床目标量(CTV1)包括潜在疾病传播的所有区域,例如食道壁和纵隔淋巴结。对于胸食管癌( n = 34),大多数患者的整个CTV1中都包含了整个胸食管。第二个CTV(CTV2)包括GTV,在肿瘤的颅骨和尾端方向上有20到25毫米的边缘,其他方向上有10毫米的边缘。肺轮廓定义为除双侧主支气管外的胸腔。心脏轮廓的定义如冯等人所述。 [id="xref-ref-10-1" class="xref-bibr" href="#ref-10"> 10 ]。简而言之,心脏开始于左肺动脉下方。为简化起见,对包括大血管的圆形结构进行了轮廓处理。心脏与,肌融合。上腔静脉被包括在内以简化和保持一致性。使用实际计划CT为接受X射线治疗的患者制定了实验性PBT计划。或者,使用计划CT为接受PBT的患者制定X射线计划。实验计划中保留了用于实际治疗的原始CTV和PTV。为了准确评估来自不同计划CT的累积剂量和体积,使用变形技术将所有计划CT和链接到CT图像的剂量合并在一起[id =“ xref-ref-12-1” class =“ xref-bibr” href =“ #ref-12“> 12 – id="xref-ref-14-1" class="xref-bibr" href="#ref-14"> 14 ]。系统之间的数据转换和转换,CT–CT变形和剂量体积研究均使用MIM Maestro ver。 6(美国俄亥俄州克利夫兰)。在X射线和质子计划中,向靶组织和正常组织的剂量输送概念完全相同。 PTV的覆盖率超过规定剂量的95%,最大脊髓剂量限制在44 Gy。在对每个X射线和质子治疗计划进行汇总之后,使用DVH分析计算剂量因素,例如整个肺的体积百分比,接受超过一定剂量(Vx)的心脏以及平均肺部剂量(MLD)。将实验计划与实际治疗计划进行比较。 X射线和质子的典型剂量分布以及总DVH示于图。id="xref-fig-1-1" class="xref-fig" href="#F1"> 1 。 NTCP是根据Emami等人和Burman等人的Lyman–Kutcher–Burman(LKB)模型计算得出的。[id =“ xref-ref-15- 1“ class =” xref-bibr“ href =”#ref-15“> 15 – id =” xref-ref-17-1“ class =” xref-bibr“ href =”#ref- 17“> 17 ]: class =” disp-formula“ id =” disp-formula-1“> class =” mathjax mml-math“> NTCP = < mml:mn> 1 2 π t < / mml:msubsup> e

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号