...
首页> 外文期刊>Journal of Contemporary Water Research and Education >Linking Global Climate Models to an Integrated Hydrologic Model: Using an Individual Station Downscaling Approach
【24h】

Linking Global Climate Models to an Integrated Hydrologic Model: Using an Individual Station Downscaling Approach

机译:将全球气候模型与综合水文模型联系起来:使用单个站点降尺度方法

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Scientists integrate models to assess the impacts of climate change and climate variability on water resources and ecosystems. In this context, integration occurs between atmospheric and hydrologic models by downscaling and bias correcting Global Circulation Models (GCM)climate projections (e.g., precipitation and temperature data sets) and feeding these data as boundary conditions into a hydrologic model. Integrated models can help water managers and policymakers make more informed decisions when planning for future climate conditions, such as managing for changes in the timing and quantity of available water (Hay et al. 2002; Salathé 2004; Hanson and Dettinger 2005; Maurer and Hidalgo 2008). Downscaling is an important step in integrated modeling because the spatial resolution of GCM simulated temperature and precipitation (~100 – 250 km) is too coarse for watershed-scale hydrologic modeling. As such, downscaling approaches combine GCM climate output with regional climate models (RCMs) and/or sub-regional climate information to alleviate the scale problem (Hay et al. 2002; Fowler et al. 2007; Maurer and Hidalgo 2008; Huntington and Niswonger 2011).In mountainous environments, it is especially important to incorporate fine-scale information into coarse GCM projections for hydrologic modeling because of the altitude-dependence of precipitation and temperature that is not reflected at the GCM resolution (Seager and Vecchi 2010). Downscaling GCM data is necessary to properly simulate hydrologic processes that are sensitive to altitude (e.g., snow pack development, snowmelt runoff, soil moisture, and evapotranspiration). Many methods have been used for downscaling GCM output to a finer spatial resolution, and most result in temperature and precipitation data sets at spatial resolutions around 10 km (Lettenmaier et al. 1999; Wood et al. 2002; Salathé 2003; Wood et al. 2004; Maurer and Hidalgo 2008), making further downscaling necessary for watershed-scale hydrologic modeling, which is typically at a scale of <1 km.Downscaling methods generally fall into three categories, statistical, dynamical, and hybrid statistical-dynamical downscaling. Statistical methods are the most commonly used (Wilby et al. 2004); however, dynamical and hybrid methods are becoming more popular due to their ability to incorporate non-stationary, regional-scale atmospheric processes into downscaled results (Leung et al. 2003). Statistical downscaling refers to modifying GCM output such that the statistical characteristics of the output (e.g., probability of occurrence) are consistent with the statistical characteristics of fine-scale climate data, typically taken from climate stations. Dynamical downscaling refers to the use of RCMs to produce climate data through regional-scale atmospheric simulations at a spatial scale smaller than the GCMs scale. Typically, RCMs simulate climate at scales between 10 and 50 km using initial and boundary conditions provided by GCMs, and they require large computational resources relative to statistical approaches. However, RCMs provide a more realistic representation of regional climate processes as compared to statistical downscaling, yet the accuracy depends largely, as is the case with statistical downscaling, on the large-scale results provided by GCMs (Piani et al. 2010).Statistical downscaling approaches are computationally efficient and are easily reproducible, but they rely on relationships that are invariant in a changing climate between large-scale GCM and regional scale climate variables (Sharma et al. 2007). The efficiency of statistical downscaling facilitates the use of many different GCM model outputs and scenarios to generate a wide range of climate projections, which is useful considering model uncertainty (Tebaldi and Knutti 2007; Pielke et al. 2009). Primary drawbacks associated with statistical downscaling include: (1) the stationary assumption of the regression relationships may not hold for climate co
机译:科学家整合模型以评估气候变化和气候变异性对水资源和生态系统的影响。在这种情况下,大气和水文模型之间会发生整合,方法是缩小比例并校正全球环流模型(GCM)气候预测(例如降水和温度数据集),然后将这些数据作为边界条件输入水文模型中。集成模型可以帮助水管理者和政策制定者在规划未来的气候条件时做出更明智的决策,例如管理可用水的时间和数量的变化(Hay等,2002;Salathé,2004; Hanson和Dettinger,2005; Maurer和Hidalgo 2008)。缩减规模是集成建模的重要步骤,因为GCM模拟温度和降水(〜100 – 250 km)的空间分辨率对于分水岭规模的水文建模而言过于粗糙。因此,降尺度方法将GCM气候输出与区域气候模型(RCM)和/或次区域气候信息相结合以缓解规模问题(Hay等人2002; Fowler等人2007; Maurer和Hidalgo 2008; Huntington和Niswonger 2011)。在山区环境中,将精细尺度的信息纳入粗略的GCM投影进行水文建模尤为重要,因为降水和温度的高度相关性并未反映在GCM分辨率上(Seager和Vecchi 2010)。缩小GCM数据对于正确模拟对海拔高度敏感的水文过程(例如积雪形成,融雪径流,土壤湿度和蒸散量)是必要的。许多方法已被用于将GCM输出缩减为更精细的空间分辨率,并且大多数方法会以10 km左右的空间分辨率产生温度和降水数据集(Lettenmaier等人1999; Wood等人2002;Salathé2003; Wood等人。 (2004; Maurer and Hidalgo 2008),使得分水岭规模的水文模型进一步缩小规模是必要的,通常规模小于1 km。缩小方法通常分为统计,动态和混合统计-动态缩小三类。统计方法是最常用的方法(Wilby等,2004)。然而,由于动态和混合方法能够将非平稳的,区域尺度的大气过程整合到缩减结果中,因此它们变得越来越流行(Leung et al。2003)。统计缩减是指修改GCM输出,以使输出的统计特征(例如发生概率)与通常从气候站获取的精细气候数据的统计特征一致。动态降级是指使用RCM通过区域规模的大气模拟以小于GCM规模的空间规模来生成气候数据。通常,RCM使用GCM提供的初始条件和边界条件模拟10至50 km范围内的气候,并且相对于统计方法,它们需要大量的计算资源。然而,与统计尺度缩小相比,RCM可以更真实地反映区域气候过程,但准确性(很大程度上取决于统计尺度缩小)取决于GCM提供的大规模结果(Piani等人,2010)。降尺度方法在计算上是有效的,并且易于重现,但它们依赖于大规模GCM和区域尺度气候变量之间变化的气候中不变的关系(Sharma等,2007)。统计缩减的效率促进了使用许多不同的GCM模型输出和方案来生成各种气候预测,这在考虑模型不确定性时很有用(Tebaldi和Knutti 2007; Pielke等人2009)。统计缩减的主要缺点包括:(1)回归关系的固定假设可能不适用于气候变量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号