...
首页> 外文期刊>Journal of Contemporary Water Research and Education >Artificial Sinks: Opportunities and Challenges for Managing Offsite Nitrogen Losses
【24h】

Artificial Sinks: Opportunities and Challenges for Managing Offsite Nitrogen Losses

机译:人工水槽:管理异地氮损失的机遇与挑战

获取原文
           

摘要

The Green Revolution of the 20th Century generated unparalleled levels of agricultural productivity based on advances in crop breeding – and ample inputs of inexpensive nitrogen (N) fertilizer. Unintended losses of N from production agriculture contribute to increases in algal biomass in estuaries and marine waters leading to loss of fisheries and spawning habitats and creation of multitudes of hypoxic “dead zones” across the globe (Conley et al. 2009; Howarth et al. 2000). Providing food security for a global population that is projected to exceed 9 billion by 2050 (U.N. Population Division 2007) is likely to include even more intensive use of N fertilizer – with great implications for coastal waters. In addition, reactive N can undergo transformations that generate nitrous oxide (N2O) – a potent greenhouse gas – leading the U.S. National Academy of Engineering to declare managing the N cycle as one of the Grand Challenges of the 21st Century (http://www.engineeringchallenges.org/cms/challenges.aspx) – and the Stockholm Resilience Center to proclaim the N cycle as one of three planetary boundaries that has been exceeded globally (Rockstrom et al. 2009).Improved crop varieties, cropping systems, precision management, and soil and plant testing hold promise for greater N use efficiency at the field scale (Cassman et al. 2002). However, reactive N is notoriously leaky, suggesting that additional control measures are needed after reactive N leaves the field and begins to flow through a catchment.Predictive geospatial tools, such as the USGS SPARROW model (Preston et al. 2009), have targeted source locations within a growing number of watersheds that have high potential for delivery of waterborne N to coastal estuaries (e.g., the Mississippi Basin, Alexander et al. 2008; Chesapeake Bay, Preston and Brakebill 1999; the Southeast U.S., Hoos and McMahon 2009). These tools recognize that certain areas of the landscape function as removal sites (i.e., sinks) for waterborne N (National Research Council 1993). In these N sink areas, denitrification converts soluble nitrate to N gas, and plant and microbial biomass retains N. Nitrogen sinks include riparian wetlands, reservoirs and lower-order (headwater) stream reaches. These locations are characterized by extended retention times and flow paths that enhance interaction of nitrate-enriched waters with labile organic matter (Groffman et al. 2009). However, in many areas of the Mississippi River Basin nitrate sink areas have been removed and/or bypassed by tile drainage, which is important in transporting nitrate from fields to streams (David et al. 2010).Where natural sinks are absent, artificial sinks, such as constructed wetlands (Tanner et al. 2005) or carbon bioreactors – simple, wood-chip filled trenches (Schipper et al. 2010a) – hold great promise for reducing edge-of-field N losses. These artificial sinks are positioned to intercept and promote denitrification in drainage waters or N-rich ground water, particularly in settings where edge-of-field N losses are dominated by nitrate-N (Gentry et al. 1998; Goolsby et al. 1999; Nolan 2001). Artificial sinks are now starting to be employed in an array of climatic, geophysical and agricultural settings. Some practices are eligible for USDA EQIP support in select states (e.g., Iowa, Arkansas, and Illinois), and more widespread adoption could occur as research advances on seasonal performance and design criteria.Field testing of bioreactors and constructed wetlands has shown that these systems can remove nitrate-N in a range of climatic conditions and be integrated into different land uses if designed to meet site-specific conditions. There are emerging general design principles for both systems that can foster the development of best management practice (BMP) guidelines for specific spatial or geographic conditions, climate regimes, and agricultural practices. Research will play a critical role for these guidelines to address the current l
机译:20世纪的绿色革命基于农作物育种的进步以及大量廉价的氮肥投入,产生了无与伦比的农业生产力。生产性农业中氮的意外损失导致河口和海水中藻类生物量的增加,导致渔业和产卵栖息地的丧失,并在全球范围内形成了许多缺氧的“死区”(Conley等,2009; Howarth等。 2000)。为预计到2050年将超过90亿的全球人口提供粮食安全(联合国人口司,2007)可能会包括更密集地使用氮肥,这对沿海水域将产生重大影响。此外,反应性N会发生转化,生成一氧化二氮(N2O)(一种有效的温室气体),导致美国国家工程院宣布管理N循环是21世纪的重大挑战之一(http:// www (engineeringchallenges.org/cms/challenges.aspx)–以及斯德哥尔摩抗灾中心宣布N循环为全球已超越的三个行星边界之一(Rockstrom等,2009)。改善了作物品种,耕作系统,精确管理,土壤和植物测试有望在田间规模上提高氮的利用效率(Cassman等,2002)。然而,反应性N众所周知是泄漏的,这表明在反应性N离开现场并开始流经集水区之后需要采取其他控制措施。预测性地理空间工具(例如USGS SPARROW模型(Preston等人,2009))已将目标源定为目标在越来越多的流域中具有将水态氮输送到沿海河口的潜力的地区(例如,密西西比盆地,亚历山大等人,2008;切萨皮克湾,普雷斯顿和布雷克比尔,1999;美国东南部,霍斯和麦克马洪,2009)。这些工具认识到景观的某些区域可以作为水基氮的清除地(即汇)(国家研究委员会,1993)。在这些氮汇区,反硝化作用将可溶性硝酸盐转化为氮气,植物和微生物生物量保留氮。氮汇包括河岸湿地,水库和下游(上游)河段。这些位置的特征在于延长的保留时间和流动路径,从而增强了富含硝酸盐的水与不稳定有机物的相互作用(Groffman等,2009)。然而,在密西西比河流域的许多地区,硝酸盐汇的区域已被瓷砖排水装置去除和/或绕过,这对于将硝酸盐从田间运输到溪流非常重要(David et al.2010)。例如人工湿地(Tanner等,2005)或碳生物反应器(简单的木屑填充沟槽(Schipper等,2010a)),有望减少场边缘氮的损失。这些人造水槽的位置可以拦截和促进排水或富氮地下水中的反硝化作用,特别是在田间边缘氮损失主要由硝酸盐氮引起的环境中(Gentry等人,1998; Goolsby等人,1999;诺兰(2001)。人工水槽现已开始在一系列气候,地球物理和农业环境中使用。在某些州(例如爱荷华州,阿肯色州和伊利诺伊州),某些实践有资格获得USDA EQIP支持,随着对季节性性能和设计标准的研究进展,可能会被更广泛地采用。生物反应器和人工湿地的现场测试表明,这些系统如果设计满足特定地点的条件,则可以在一定的气候条件下去除硝酸盐氮,并被整合到不同的土地用途中。两种系统都有新出现的通用设计原则,可以促进针对特定空间或地理条件,气候制度和农业实践的最佳管理实践(BMP)指南的开发。研究将对这些指南起到至关重要的作用,以解决当前

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号