...
首页> 外文期刊>Journal of inequalities and applications >Reducible problem for a class of almost-periodic non-linear Hamiltonian systems
【24h】

Reducible problem for a class of almost-periodic non-linear Hamiltonian systems

机译:一类概周期非线性哈密顿系统的可约问题

获取原文
           

摘要

This paper studies the reducibility of almost-periodic Hamiltonian systems with small perturbation near the equilibrium which is described by the following Hamiltonian system: $$rac{dx}{dt} = J igl[{A} +arepsilon{Q}(t,arepsilon) igr]x+ arepsilon g(t,arepsilon)+h(x,t,arepsilon). $$ It is proved that, under some non-resonant conditions, non-degeneracy conditions, the suitable hypothesis of analyticity and for the sufficiently small ?μ, the system can be reduced to a constant coefficients system with an equilibrium by means of an almost-periodic symplectic transformation.KeywordsAlmost-periodic matrix??Reducibility??KAM iteration??Hamiltonian systems??Small divisors??1 IntroductionIn this paper we are studying the reducibility of the following almost-periodic Hamiltonian system: $$egin{aligned} rac{dx}{dt} = J igl[{A} + arepsilon{Q}(t,arepsilon) igr]x +arepsilon g(t,arepsilon)+h(x,t,arepsilon),quad xin mathbf{R}^{2N}, end{aligned}$$ (1) where J is an anti-symmetric symplectic matrix, A is a (2N imes 2N) symmetric constant matrix with possible multiple eigenvalues, and (Q(t)) is an analytic almost-periodic symmetric (2N imes2N) matrix with respect to t, (g(t,arepsilon)) and (h(x,t,arepsilon)) are almost-periodic 2N-dimensional vector-valued functions with respect to t, with basic frequencies (omega=(omega_{1},omega_{2},ldots)) and (h(x,t)=O(x^{2})) ((xightarrow0)), and $$J=left ( egin{matrix} 0 & I_{N} -I_{N} & 0 end{matrix} ight ) , $$ where (I_{N}) is a (Nimes N) identity matrix and ?μ is a sufficiently small parameter. First of all we will recall some previous results in the field of reducibility for analytic differential systems. Consider the differential equation $$egin{aligned} rac{dx}{dt} = A(t)x,quad {xinmathbf{R}^{m}}, end{aligned}$$ (2) where (A(t)) is an almost-periodic matrix. We call the transformation (x= P(t)y) almost-periodic Lyapunova??Perron (L-P) transformation, if (P(t)) is non-singular and P, ({P}^{-1}), and á1? are almost periodic. The transformed equation is $$egin{aligned} rac{dy}{dt} = {C}(t)y, end{aligned}$$ (3) where ({C}= {P}^{-1}(AP-dot{P})). If there exists an almost-periodic L-P transformation such that ({C}(t)) is a constant matrix, then we call equation (2) reducible.In recent years, many researchers have devoted themselves to the study of the reducibility of finite dimensional systems by means of the KAM methods. The well-known Floquet theorem states that every periodic differential equation (2) can be reduced to a constant coefficients differential equation (3) by means of a periodic change of variables with the same period as ({A}(t)). But, if ({A}(t)) is quasi-periodic (q-p), then there is an example in [1] which illustrates that (2) is irreducible. In 1981, Johnson and Sell [2] showed that if (A(t)) the quasi-periodic matrix satisfies a??full spectruma?? conditions, then (2) is reducible. In 1992, Jorba and Sim?3 [3] proved the reducibility result of linear quasi-periodic systems like (5) for the constant matrix A with distinct eigenvalues. In 1999, Xu [4] proved the reducibility result of linear quasi-periodic systems like (5) for the constant matrix A with multiple eigenvalues. In 1996, Jorba and Sim?3 [5] considered the quasi-periodic system $$ rac{dx}{dt} = igl[ {A}+arepsilon{Q}(t) igr] x+ arepsilon {g}(t)+ {h}(x,t),quad {xinmathbf{R}^{m},} $$ (4) where the constant matrix A has distinct eigenvalues. They proved that system (4) is reducible for (arepsilonin E) using the non-resonant conditions and non-degeneracy conditions, where E is the non-empty Cantor subset such that (Esubset(0,arepsilon_{0})). Instead of quasi-periodic reduction to a constant coefficient linear systems, in 1996, Xu and You [6] proved the reducibility of the linear almost-periodic differential equation $$ rac{dx}{dt} = igl[ {A}+arepsilon{Q}(t) igr] x,quad {x inmathbf{R}^{m},} $$ (5) where the constant matrix A has different eigenvalues and ({Q}(t)) is an (m imes m) analytic almost-periodic matrix with frequencies (omega= (omega_{1},omega_{2},ldots)). Under some small divisor conditions and for most sufficiently small ?μ, they proved that system (5) is reducible to the constant coefficient system by an affine almost-periodic transformation. In 2013, Qiu and Li [7] considered the following non-linear almost-periodic differential equation: $$ rac{dx}{dt} = igl[ {A}+arepsilon{a}(t) igr] {x}^{2n+1} + {h}(x,t, arepsilon)+ {f}(x,t,arepsilon),quad {xin mathbf{R},} $$ (6) where ({ngeq0}) is an integer, A is a positive number, ?μ is a small parameter, h is a higher order term, and f is a small perturbation term. They proved that under some suitable conditions and using the KAM method system (6) can be reduced to a suitable normal form with zero as an equilibrium point by an affine almost-periodic transformation, so it has a
机译:本文研究了近似周期的具有近似扰动的近似周期哈密顿系统的可约性,该系统由以下哈密顿系统描述:$$ frac {dx} {dt} = J bigl [{A} + varepsilon {Q} (t, varepsilon) bigrx + varepsilon g(t, varepsilon)+ h(x,t, varepsilon)。 $$证明,在某些非共振条件,非简并条件,适当的解析性假设和足够小的Δμ的情况下,该系统可以通过近似关键词概周期矩阵约化KAM迭代哈密顿系统小除数1引言本文研究以下几近概哈密顿系统的约简:$$ begin {aligned } frac {dx} {dt} = J bigl [{A} + varepsilon {Q}(t, varepsilon) bigr] x + varepsilon g(t, varepsilon)+ h(x,t, varepsilon), quad x in mathbf {R} ^ {2N}, end {aligned} $$(1)其中J是一个反对称辛矩阵,A是(2N times 2N )对称常数矩阵具有可能的多个特征值,并且(Q(t))是关于t,(g(t, varepsilon))和的解析近似周期对称(2N times2N )矩阵(h(x,t, varepsilon))几乎是周期2N维基本频率( omega =( omega_ {1}, omega_ {2}, ldots))和(h(x,t)= O(x ^ {2}))((x rightarrow0 ))和$$ J = left( begin {matrix} 0&I_ {N} -I_ {N}&0 end {matrix} 右),$ $$,其中(I_ {N} )是一个(N N N)个单位矩阵,而?μ是一个足够小的参数。首先,我们将回顾分析微分系统的可约性领域的一些先前结果。考虑微分方程$$ begin {aligned} frac {dx} {dt} = A(t)x, quad {x in mathbf {R} ^ {m}}, end {aligned} $$ (2)其中(A(t))是一个近似周期的矩阵。如果(P(t))是非奇异且P,({P} ^ { -1} )和á1?几乎是周期性的。变换后的方程为$$ begin {aligned} frac {dy} {dt} = {C}(t)y, end {aligned} $$(3)其中({C} = {P} ^ { -1}(AP- dot {P}))。如果存在一个近似周期的LP变换,使得({C}(t))是一个常数矩阵,则我们将方程(2)称为可约化的。近年来,许多研究人员致力于可约化的研究。通过KAM方法确定有限维系统。众所周知的Floquet定理指出,可以通过周期与({A}(t))相同的变量的周期性变化,将每个周期微分方程(2)简化为常数系数微分方程(3)。 。但是,如果({A}(t))是准周期(q-p),则[1]中有一个示例说明了(2)是不可约的。 1981年,Johnson and Sell [2]证明,如果(A(t))的准周期矩阵满足“全谱”,则该矩阵满足条件,则(2)是可约的。 1992年,Jorba和Sim?3 [3]证明了线性准周期系统(如(5))对于具有不同特征值的常数矩阵A的可约性结果。 1999年,Xu [4]证明了具有多个特征值的常数矩阵A的线性准周期系统(如(5))的可约性结果。 1996年,Jorba和Sim?3 [5]考虑了准周期系统$$ frac {dx} {dt} = bigl [{A} + varepsilon {Q}(t) bigr] x + varepsilon { g}(t)+ {h}(x,t), quad {x in mathbf {R} ^ {m},} $$(4)其中,常数矩阵A具有不同的特征值。他们证明了系统(4)在非谐振条件和非简并性条件下可简化( varepsilon in E ),其中E是非空Cantor子集,使得(E subset(0, varepsilon_ {0}))。徐和尤[6]于1996年证明不是线性近似定周期线性系统,而是用准周期线性微分方程$$ frac {dx} {dt} = bigl [{A} + varepsilon {Q}(t) bigr] x, quad {x in mathbf {R} ^ {m},} $$(5)其中,常数矩阵A具有不同的特征值,并且({Q} (t))是一个频率为( omega =( omega_ {1}, omega_ {2}, ldots))的(m times m )解析近周期矩阵。在一些小除数的条件下,对于最足够小的μμ,他们证明了系统(5)可通过仿射近似周期变换简化为常数系数系统。 2013年,邱和李[7]考虑了以下非线性近周期微分方程:$$ frac {dx} {dt} = bigl [{A} + varepsilon {a}(t) bigr] {x} ^ {2n + 1} + {h}(x,t, varepsilon)+ {f}(x,t, varepsilon), quad {x in mathbf {R},} $$( 6)其中({n geq0} )是一个整数,A是一个正数,Δμ是一个小参数,h是一个高阶项,而f是一个小扰动项。他们证明,在某些合适的条件下,使用KAM方法,系统(6)可以通过仿射近似周期变换简化为以零为平衡点的合适范式,因此它具有

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号