首页> 外文期刊>Journal of Applied Mechanical Engineering >New Control Strategy for a Hybrid Ground Source Heat Pump System coupled to a Closed Circuit Cooling Tower
【24h】

New Control Strategy for a Hybrid Ground Source Heat Pump System coupled to a Closed Circuit Cooling Tower

机译:混合地源热泵系统与闭路冷却塔耦合的新控制策略

获取原文
获取外文期刊封面目录资料

摘要

Hybrid Ground Source Heat Pump Systems (HGSHPSs) which include cooling towers are widely used so as to improve Ground Source Heat Pump Systems (GSHPSs) efficiency in cooling dominated applications. A Greek office building with total cooled area 1000 m2 is examined. The whole system is modelled using TRNSYS 17. System’s operation is optimized using TRNOPT 17 so as to meet the maximum cooling load during the net cooling period, when no heating loads occur, by minimizing Ground Heat Exchangers (GHEs) depth. Three control strategies, based on continuous observation of critical temperatures, are applied to the optimized system. Each strategy attempts to achieve a further optimization of HGSHPS’s operation by minimizing the electric power consumption. In the first one, the cooling tower is turned on when the difference between the fluid temperature exiting heat pumps and ambient air wet bulb temperature exceeds 10°C. In the second one, the cooling tower is on when the fluid temperature exiting GHEs is greater than 28°C. In the third one, the cooling tower starts to operate when the fluid temperature exiting heat pumps is greater than 32°C. Each of these control points is normalized by the fluid temperature exiting the hot side of Heat Exchanger which comes in between the ground loop and the Closed Circuit Cooling Tower loop. The new set points define three new control strategies which are examined so as to achieve a further improvement to HGSHPS’s operation.
机译:包括冷却塔在内的混合地源热泵系统(HGSHPS)被广泛使用,以提高在冷却为主的应用中的地源热泵系统(GSHPS)的效率。检查了总冷却面积为1000平方米的希腊办公大楼。整个系统使用TRNSYS 17进行建模。使用TRNOPT 17优化了系统的运行,从而通过最小化地面换热器(GHE)的深度来满足净制冷期间最大的制冷负荷,此时无热负荷发生。基于对临界温度的连续观察,三种控制策略被应用于优化系统。每种策略都试图通过使电力消耗最小化来进一步优化HGSHPS的运行。在第一个中,当离开热泵的流体温度与周围空气湿球温度之间的差异超过10°C时,冷却塔打开。在第二个步骤中,当流出GHE的流体温度高于28°C时,冷却塔打开。在第三个中,当离开热泵的流体温度高于32°C时,冷却塔开始运行。这些控制点中的每一个都通过流出热交换器的热侧的流体温度进行标准化,该热交换器位于接地回路和闭路冷却塔回路之间。新的设定点定义了三种新的控制策略,并对其进行了检查,以进一步改善HGSHPS的操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号