首页> 外文期刊>Journal of Applied Mechanical Engineering >The Effect of Microporous Layer in Phosphoric Acid Doped Polybenzimidazole Polymer Electrolyte Membrane Fuel Cell
【24h】

The Effect of Microporous Layer in Phosphoric Acid Doped Polybenzimidazole Polymer Electrolyte Membrane Fuel Cell

机译:微孔层在磷酸掺杂聚苯并咪唑聚合物电解质膜燃料电池中的作用

获取原文
       

摘要

A polybenzimidazole (PBI) based polymer electrolyte fuel cells, which called high temperature polymerelectrolyte fuel cells (HT-PEMS), operate at higher temperatures (120-200°C) than conventional PEM fuel cells. Although it is known that HT-PEMS have some of the significant advantages as non-humidification requirements for membrane and the lack of liquid water at high temperature in the fuel cell, the generated water as a result of oxygen reduction reaction causes in the degradation of these systems. The generated water absorbed into membrane side interacts with the hydrophilic PBI matrix and it can cause swelling of membrane, so water transport mechanism in a Membrane Electrode Assembly (MEA) needs to be well understood and water balance must be calculated in MEA. Therefore, the water diffusion transport across the electrolyte should be determined. In this study, it is investigated firstly the water content in a MEA in the case of with/without Microporous Layer (MPL). Secondly, in the case of with MPL the effect of microporous layer’s thickness on the water management in fuel cell is investigated. For this aim, two-dimensional fuel cell with interdigitated flow-field is modeled using Comsol Multiphysics 4.2a software. The operating temperature and doping level is selected as 180°C and 6.75 RPU H3PO4/PBI, respectively. The results ofthis work brought out that MPL significantly effects to water content in MEA and reduces H2O concentration in MEA. Thus it can be prevented to flooding in MEA and so durability of the cell is increased.
机译:一种基于聚苯并咪唑(PBI)的聚合物电解质燃料电池,称为高温聚合物电解质燃料电池(HT-PEMS),其工作温度高于常规PEM燃料电池(120-200°C)。尽管已知HT-PEMS具有一些显着的优点,例如对膜的非加湿要求以及燃料电池中高温下缺乏液态水,但是由于氧还原反应而产生的水会导致燃料电池的降解。这些系统。吸收到膜侧的生成水与亲水性PBI基质相互作用,会导致膜膨胀,因此需要充分了解膜电极组件(MEA)中的水传输机理,并且必须在MEA中计算水平衡。因此,应当确定水在电解质上的扩散传输。在这项研究中,首先研究了在有/没有微孔层(MPL)的情况下,MEA中的水分含量。其次,在使用MPL的情况下,研究了微孔层厚度对燃料电池中水管理的影响。为此,使用Comsol Multiphysics 4.2a软件对具有交叉指型流场的二维燃料电池进行建模。工作温度和掺杂水平分别选择为180°C和6.75 RPU H3PO4 / PBI。这项工作的结果表明,MPL显着影响MEA中的水含量,并降低MEA中的H2O浓度。因此,可以防止在MEA中溢流,因此提高了电池的耐久性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号