...
首页> 外文期刊>Journal of biological engineering >Introduction of customized inserts for streamlined assembly and optimization of BioBrick synthetic genetic circuits
【24h】

Introduction of customized inserts for streamlined assembly and optimization of BioBrick synthetic genetic circuits

机译:引入定制插入物以简化组装和优化BioBrick合成遗传电路

获取原文
           

摘要

Background BioBrick standard biological parts are designed to make biological systems easier to engineer (e.g. assemble, manipulate, and modify). There are over 5,000 parts available in the Registry of Standard Biological Parts that can be easily assembled into genetic circuits using a standard assembly technique. The standardization of the assembly technique has allowed for wide distribution to a large number of users -- the parts are reusable and interchangeable during the assembly process. The standard assembly process, however, has some limitations. In particular it does not allow for modification of already assembled biological circuits, addition of protein tags to pre-existing BioBrick parts, or addition of non-BioBrick parts to assemblies. Results In this paper we describe a simple technique for rapid generation of synthetic biological circuits using introduction of customized inserts. We demonstrate its use in Escherichia coli (E. coli) to express green fluorescent protein (GFP) at pre-calculated relative levels and to add an N-terminal tag to GFP. The technique uses a new BioBrick part (called a BioScaffold) that can be inserted into cloning vectors and excised from them to leave a gap into which other DNA elements can be placed. The removal of the BioScaffold is performed by a Type IIB restriction enzyme (REase) that recognizes the BioScaffold but cuts into the surrounding sequences; therefore, the placement and removal of the BioScaffold allows the creation of seamless connections between arbitrary DNA sequences in cloning vectors. The BioScaffold contains a built-in red fluorescent protein (RFP) reporter; successful insertion of the BioScaffold is, thus, accompanied by gain of red fluorescence and its removal is manifested by disappearance of the red fluorescence. Conclusions The ability to perform targeted modifications of existing BioBrick circuits with BioScaffolds (1) simplifies and speeds up the iterative design-build-test process through direct reuse of existing circuits, (2) allows incorporation of sequences incompatible with BioBrick assembly into BioBrick circuits (3) removes scar sequences between standard biological parts, and (4) provides a route to adapt synthetic biology innovations to BioBrick assembly through the creation of new parts rather than new assembly standards or parts collections.
机译:背景技术BioBrick标准生物部件旨在使生物系统更易于工程设计(例如组装,操纵和修改)。标准生物零件注册处提供了5,000多个零件,这些零件可以使用标准组装技术轻松组装到遗传回路中。组装技术的标准化已允许向大量用户广泛分发-零件在组装过程中可重复使用和互换。但是,标准组装过程有一些限制。特别是,它不允许修改已组装的生物回路,向预先存在的BioBrick零件添加蛋白质标签或向装配体添加非BioBrick零件。结果在本文中,我们介绍了一种通过引入定制插入物来快速生成合成生物回路的简单技术。我们证明其在大肠杆菌(E. coli)中的使用,以预先计算的相对水平表达绿色荧光蛋白(GFP),并向GFP添加N末端标签。该技术使用了新的BioBrick零件(称为BioScaffold),可以将其插入克隆载体中并从中切除,从而留出可以放置其他DNA元件的间隙。 BioScaffold的去除是通过IIB型限制性酶(REase)进行的,该酶识别BioScaffold,但切入周围的序列。因此,BioScaffold的放置和去除可以在克隆载体中的任意DNA序列之间建立无缝连接。 BioScaffold包含内置的红色荧光蛋白(RFP)报告基因;因此,成功插入BioScaffold会伴随红色荧光的增加,而红色荧光的消失则表明其已被清除。结论利用BioScaffolds对目标BioBrick电路进行有针对性的修改的能力(1)通过直接重复使用现有电路来简化并加快迭代设计-构建-测试过程,(2)允许将与BioBrick装配不兼容的序列整合到BioBrick电路中( 3)消除了标准生物零件之间的疤痕序列,并且(4)提供了一条途径,通过创建新零件而不是新的组装标准或零件集合,使合成生物学创新适应BioBrick组装。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号