首页> 外文期刊>Johnson Matthey Technology Review >High Temperature Strengthening Mechanisms in the Alloy Platinum-5% Rhodium DPH
【24h】

High Temperature Strengthening Mechanisms in the Alloy Platinum-5% Rhodium DPH

机译:5%铂铑DPH合金的高温强化机理

获取原文
       

摘要

To improve the high temperature properties, platinum can be hardened by solid solution and/or oxide particles. The investigated alloy, dispersion hardened platinum-5% rhodium (Pt-5%Rh DPH), was produced via melting and subsequent annealing of the semi-finished product in order to obtain an oxide particle dispersion. Despite the relatively large oxide particles formed in this process, the creep strength is much higher in comparison to conventional Pt-5%Rh. The aim of this paper is to study the strengthening mechanisms in the alloy Pt-5%Rh DPH by transmission and scanning electron microscopy. The size distribution of oxide particles shows a bimodal distribution, and the average oxide particle diameter is 315 nm for particles larger than 150 nm. For particles between 25 nm and 150 nm the average diameter is 49 nm. The size ranges of oxide particles are not substantially affected by high temperature creep deformation, but particles of <25 nm evolve during high temperature creep. It was found that all particles of different size ranges interact with dislocations and hence contribute to the strengthening of Pt-5%Rh DPH. Dislocation forests are pinned on the surface of oxide particles larger than 150 nm in diameter. Dislocation pile ups form between particles with a size range of about 500 nm. Medium size and small particles of diameters between 50 nm and 10 nm act as obstacles to single dislocations through backside pinning.
机译:为了改善高温性能,铂可以通过固溶体和/或氧化物颗粒进行硬化。通过对半成品进行熔融和随后的退火处理,生产出了所研究的合金,即弥散硬化的5%铑铂(Pt-5%Rh DPH),以获得氧化物颗粒分散体。尽管在此过程中形成了相对较大的氧化物颗粒,但与常规的Pt-5%Rh相比,其蠕变强度要高得多。本文的目的是通过透射和扫描电子显微镜研究Pt-5%Rh DPH合金的强化机理。氧化物颗粒的尺寸分布显示出双峰分布,大于150 nm的颗粒的平均氧化物粒径为315 nm。对于介于25 nm和150 nm之间的粒子,平均直径为49 nm。氧化物颗粒的尺寸范围基本上不受高温蠕变变形的影响,但在高温蠕变过程中会析出<25 nm的颗粒。发现所有不同尺寸范围的颗粒均与位错相互作用,因此有助于增强Pt-5%Rh DPH。位错森林固定在直径大于150 nm的氧化物颗粒表面。位错堆积在尺寸范围约为500 nm的粒子之间形成。通过背面钉扎,中等尺寸和直径在50 nm至10 nm之间的小颗粒成为单个位错的障碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号