...
首页> 外文期刊>Drug delivery. >Photopolymerization-based synthesis of iron oxide nanoparticle embedded PNIPAM nanogels for biomedical applications
【24h】

Photopolymerization-based synthesis of iron oxide nanoparticle embedded PNIPAM nanogels for biomedical applications

机译:基于光聚合的生物医学应用氧化铁纳米粒子嵌入的PNIPAM纳米凝胶的合成

获取原文
           

摘要

Abstract Conventional therapeutic techniques treat patients by delivering biotherapeutics to the entire body. With targeted delivery, biotherapeutics are transported to the afflicted tissue reducing exposure to healthy tissue. Targeted delivery devices are minimally composed of a stimuli responsive polymer allowing triggered release and magnetic nanoparticles enabling targeting as well as alternating magnetic field (AMF) heating. Although more traditional methods, like emulsion polymerization, have been used to realize such devices, the synthesis is problematic. For example, surfactants preventing agglomeration must be removed from the product increasing time and cost. Ultraviolet (UV) photopolymerization is more efficient and ensures safety by using biocompatible substances. Reactants selected for nanogel fabrication were N-isopropylacrylamide (monomer), methylene bis-acrylamide (crosslinker), and Irgacure 2959 (photoinitiator). The 10?nm superparamagnetic nanoparticles for encapsulation were composed of iron oxide. Herein, a low-cost, scalable, and rapid, custom-built UV photoreactor with in situ, spectroscopic monitoring system is used to observe synthesis. This method also allows in situ encapsulation of the magnetic nanoparticles simplifying the process. Nanogel characterization, performed by transmission electron microscopy, reveals size-tunable nanogel spheres between 40 and 800?nm in diameter. Samples of nanogels encapsulating magnetic nanoparticles were subjected to an AMF and temperature increase was observed indicating triggered release is possible. Results presented here will have a wide range of applications in medical sciences like oncology, gene delivery, cardiology, and endocrinology.
机译:摘要常规治疗技术是通过向全身输送生物治疗药物来治疗患者的。通过靶向递送,生物治疗药物被运输到患病组织,从而减少了对健康组织的暴露。靶向输送装置最少由刺激触发的聚合物(允许触发释放)和磁性纳米颗粒(能够靶向以及交替磁场(AMF)加热)组成。尽管已使用更传统的方法(例如乳液聚合)来实现此类设备,但合成存在问题。例如,必须从产品中除去防止结块的表面活性剂,这增加了时间和成本。紫外线(UV)光聚合通过使用生物相容性物质来提高效率和确保安全性。选择用于制备纳米凝胶的反应物是N-异丙基丙烯酰胺(单体),亚甲基双丙烯酰胺(交联剂)和Irgacure 2959(光引发剂)。用于封装的10?nm超顺磁性纳米粒子由氧化铁组成。本文中,使用低成本,可扩展,快速,定制的具有原位光谱监控系统的UV光反应器来观察合成。该方法还允许磁性纳米颗粒的原位包封以简化该过程。通过透射电子显微镜进行的纳米凝胶表征,揭示了直径在40至800?nm之间的尺寸可调的纳米凝胶球。封装磁性纳米颗粒的纳米凝胶样品经过AMF处理,观察到温度升高,表明可能触发释放。本文介绍的结果将在医学,肿瘤学,基因传递,心脏病学和内分泌学等领域广泛应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号