...
首页> 外文期刊>Drug Design, Development and Therapy >Experimental and molecular modeling approach to optimize suitable polymers for fabrication of stable fluticasone nanoparticles with enhanced dissolution and antimicrobial activity
【24h】

Experimental and molecular modeling approach to optimize suitable polymers for fabrication of stable fluticasone nanoparticles with enhanced dissolution and antimicrobial activity

机译:实验和分子建模方法,以优化合适的聚合物,以制备具有增强的溶出度和抗菌活性的稳定的氟替卡松纳米颗粒

获取原文

摘要

Background and aim: The challenges with current antimicrobial drug therapy and resistance remain a significant global health threat. Nanodrug delivery systems are playing a crucial role in overcoming these challenges and open new avenues for effective antimicrobial therapy. While fluticasone (FLU), a poorly water-soluble corticosteroid, has been reported to have potential antimicrobial activity, approaches to optimize its dissolution profile and antimicrobial activity are lacking in the literature. This study aimed to combine an experimental study with molecular modeling to design stable FLU nanopolymeric particles with enhanced dissolution rates and antimicrobial activity. Methods: Six different polymers were used to prepare FLU nanopolymeric particles: hydroxyl propyl methylcellulose (HPMC), poly (vinylpyrrolidone) (PVP), poly (vinyl alcohol) (PVA), ethyl cellulose (EC), Eudragit (EUD), and Pluronics?. A low-energy method, nanoprecipitation, was used to prepare the polymeric nanoparticles. Results and conclusion: The combination of HPMC-PVP and EUD-PVP was found most effective to produce stable FLU nanoparticles, with particle sizes of 250?nm?±2.0 and 280?nm ±4.2 and polydispersity indices of 0.15?nm ±0.01 and 0.25?nm?±0.03, respectively. The molecular modeling studies endorsed the same results, showing highest polymer drug binding free energies for HPMC-PVP-FLU (-35.22?kcal/mol ±0.79) and EUD-PVP-FLU (-25.17?kcal/mol ±1.12). In addition, it was observed that Ethocel? favored a wrapping mechanism around the drug molecules rather than a linear conformation that was witnessed for other individual polymers. The stability studies conducted for 90?days demonstrated that HPMC-PVP-FLU nanoparticles stored at 2°C–8°C and 25°C were more stable. Crystallinity of the processed FLU nanoparticles was confirmed using differential scanning calorimetry, powder X-ray diffraction analysis and TEM. The Fourier transform infrared spectroscopy (FTIR) studies showed that there was no chemical interaction between the drug and chosen polymer system. The HPMC-PVP-FLU nanoparticles also showed enhanced dissolution rate ( P <0.05) compared to the unprocessed counterpart. The in vitro antibacterial studies showed that HPMC-PVP-FLU nanoparticles displayed superior effect against gram-positive bacteria compared to the unprocessed FLU and positive control.
机译:背景和目标:当前的抗微生物药物治疗和耐药性挑战仍然是全球健康的重大威胁。纳米药物输送系统在克服这些挑战并为有效的抗菌治疗开辟新途径方面发挥着至关重要的作用。尽管据报道水溶性较差的皮质类固醇氟替卡松(FLU)具有潜在的抗菌活性,但文献中缺乏优化其溶出度和抗菌活性的方法。这项研究旨在将实验研究与分子建模相结合,以设计稳定的FLU纳米聚合物颗粒,并提高其溶出速率和抗菌活性。方法:使用六种不同的聚合物制备FLU纳米聚合物颗粒:羟丙基甲基纤维素(HPMC),聚乙烯吡咯烷酮(PVP),聚乙烯醇(PVA),乙基纤维素(EC),Eudragit(EUD)和Pluronics ?。使用低能方法纳米沉淀法制备了聚合物纳米颗粒。结果与结论:HPMC-PVP和EUD-PVP的组合被发现最有效地生产稳定的FLU纳米粒子,其粒径为250?nm?±2.0和280?nm±4.2,多分散指数为0.15?nm±0.01和。分别为0.25λnm±0.03。分子模型研究支持相同的结果,显示出HPMC-PVP-FLU(-35.22?kcal / mol±0.79)和EUD-PVP-FLU(-25.17?kcal / mol±1.12)最高的聚合物药物结合自由能。此外,观察到Ethocel ?支持药物分子周围的包裹机制,而不是其他单个聚合物所观察到的线性构象。进行90天的稳定性研究表明,在2°C–8°C和25°C下存储的HPMC-PVP-FLU纳米颗粒更稳定。使用差示扫描量热法,粉末X射线衍射分析和TEM证实加工后的FLU纳米颗粒的结晶度。傅里叶变换红外光谱(FTIR)研究表明,药物与所选的聚合物系统之间没有化学相互作用。与未处理的对应物相比,HPMC-PVP-FLU纳米粒子还显示出更高的溶出速率(P <0.05)。体外抗菌研究表明,与未加工的FLU和阳性对照相比,HPMC-PVP-FLU纳米颗粒对革兰氏阳性细菌表现出更好的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号