...
首页> 外文期刊>Hydrology and Earth System Sciences >Thermodynamic constraints on effective energy and mass transfer and catchment function
【24h】

Thermodynamic constraints on effective energy and mass transfer and catchment function

机译:热力学上对有效能量和质量传递及捕集功能的限制

获取原文
           

摘要

Understanding how water, energy and carbon are partitioned to primaryproduction and effective precipitation is central to quantifying the limitson critical zone evolution. Recent work suggests quantifying energetictransfers to the critical zone in the form of effective precipitation andprimary production provides a first order approximation of critical zoneprocess and structural organization. However, explicit linkage of thiseffective energy and mass transfer (EEMT; W m?2) to critical zone statevariables and well defined physical limits remains to be developed. Theobjective of this work was to place EEMT in the context of thermodynamic statevariables of temperature and vapor pressure deficit, with explicitdefinition of EEMT physical limits using a global climate dataset. The relationof EEMT to empirical measures of catchment function was also examined using asubset of the Model Parameter Estimation Experiment (MOPEX) catchments. Thedata demonstrated three physical limits for EEMT: (i) an absolute vapor pressuredeficit threshold of 1200 Pa above which EEMT is zero; (ii) a temperaturedependent vapor pressure deficit limit following the saturated vaporpressure function up to a temperature of 292 K; and (iii) a minimumprecipitation threshold required from EEMT production at temperatures greaterthan 292 K. Within these limits, EEMT scales directly with precipitation, withincreasing conversion of the precipitation to EEMT with increasing temperature.The state-space framework derived here presents a simplified framework withwell-defined physical limits that has the potential for directly integratingregional to pedon scale heterogeneity in effective energy and mass transferrelative to critical zone structure and function within a commonthermodynamic framework.
机译:了解水,能量和碳如何分配到初级生产和有效降水是量化极限临界区演化的关键。最近的工作表明,以有效降水的形式量化向临界区的能量转移,初级生产提供了临界区过程和结构组织的一阶近似值。然而,这种有效的能量和质量转移(EEMT; W m ?2 )与临界区状态变量和明确定义的物理极限的明确联系尚待开发。这项工作的目的是将EEMT置于温度和蒸气压亏空的热力学状态变量的背景下,并使用全球气候数据集明确定义EEMT物理极限。还使用模型参数估计实验(MOPEX)流域的子集检查了EEMT与流域功能的经验度量之间的关系。数据证明了EEMT的三个物理极限:(i)绝对蒸气压赤字阈值为1200 Pa,高于该阈值EEMT为零; (ii)遵循饱和蒸气压函数直至292 K的温度的蒸气压亏空极限; (iii)在高于292 K的温度下EEMT生产所需的最小降水阈值。在这些限制内,EEMT随降水直接缩放,随着温度的升高,降水向EEMT的转化率也随之增加。此处导出的状态空间框架提供了简化的框架定义的物理极限,它有可能在有效的能量和质量传递中,相对于关键区域的结构和功能,在常规热力学框架内直接整合区域到子尺度的异质性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号