首页> 外文期刊>Hydrology and Earth System Sciences Discussions >Multi-model approach to quantify groundwater-level prediction uncertainty using an ensemble of global climate models and multiple abstraction scenarios
【24h】

Multi-model approach to quantify groundwater-level prediction uncertainty using an ensemble of global climate models and multiple abstraction scenarios

机译:使用全球气候模型和多种抽象方案的集合来量化地下水位预测不确定性的多模型方法

获取原文
           

摘要

Worldwide, groundwater resources are under a constant threat of overexploitation and pollution due to anthropogenic and climatic pressures. For sustainable management and policy making a reliable prediction of groundwater levels for different future scenarios is necessary. Uncertainties are present in these groundwater-level predictions and originate from greenhouse gas scenarios, climate models, conceptual hydro(geo)logical models (CHMs) and groundwater abstraction scenarios. The aim of this study is to quantify the individual uncertainty contributions using an ensemble of 2 greenhouse gas scenarios (representative concentration pathways 4.5 and 8.5), 22 global climate models, 15 alternative CHMs and 5 groundwater abstraction scenarios. This multi-model ensemble approach was applied to a drought-prone study area in Bangladesh. Findings of this study, firstly, point to the strong dependence of the groundwater levels on the CHMs considered. All groundwater abstraction scenarios showed a significant decrease in groundwater levels. If the current groundwater abstraction trend continues, the groundwater level is predicted to decline about 5 to 6 times faster for the future period 2026–2047 compared to the baseline period (1985–2006). Even with a 30?% lower groundwater abstraction rate, the mean monthly groundwater level would decrease by up to 14?m in the southwestern part of the study area. The groundwater abstraction in the northwestern part of Bangladesh has to decrease by 60?% of the current abstraction to ensure sustainable use of groundwater. Finally, the difference in abstraction scenarios was identified as the dominant uncertainty source. CHM uncertainty contributed about 23?% of total uncertainty. The alternative CHM uncertainty contribution is higher than the recharge scenario uncertainty contribution, including the greenhouse gas scenario and climate model uncertainty contributions. It is recommended that future groundwater-level prediction studies should use multi-model and multiple climate and abstraction scenarios.
机译:在全球范围内,由于人为和气候压力,地下水资源一直受到过度开发和污染的威胁。为了实现可持续管理和政策,有必要对未来不同情况下的地下水位进行可靠的预测。在这些地下水位预测中存在不确定性,其不确定性源于温室气体情景,气候模型,概念性水文(地质)逻辑模型(CHM)和地下水抽取情景。本研究的目的是使用2种温室气体情景(代表浓度路径4.5和8.5),22种全球气候模型,15种替代CHM和5种地下水抽取情景的集合来量化个体不确定性贡献。这种多模型集成方法已应用于孟加拉国易干旱的研究区。首先,这项研究的结果指出了地下水位对所考虑的CHM的强烈依赖性。所有地下水抽取场景均显示地下水位显着下降。如果当前的地下水抽取趋势继续下去,则与基准期(1985-2006年)相比,未来2026-2047年的地下水位下降速度预计将快5至6倍。即使降低了30%的地下水抽取率,研究区域西南部的平均每月地下水位也会降低多达14µm。孟加拉西北部的地下水抽取量必须比目前的抽取量减少60%,以确保可持续利用地下水。最终,抽象场景中的差异被确定为不确定性的主要来源。 CHM不确定性占总不确定性的23%。替代性CHM不确定性贡献高于补给情景不确定性贡献,包括温室气体情景和气候模型不确定性贡献。建议未来的地下水位预测研究应使用多模型,多气候和抽象方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号