首页> 外文期刊>Hydrology and Earth System Sciences >Using groundwater age and hydrochemistry to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand
【24h】

Using groundwater age and hydrochemistry to understand sources and dynamics of nutrient contamination through the catchment into Lake Rotorua, New Zealand

机译:利用地下水年龄和水化学方法了解通过流向新西兰罗托鲁瓦湖的流域的营养物污染的来源和动态

获取原文
获取外文期刊封面目录资料

摘要

The water quality of Lake Rotorua has steadily declined over the past50 years despite mitigation efforts over recent decades. Delayed response ofthe groundwater discharges to historic land-use intensification 50 years agowas the reason suggested by early tritium measurements, which indicatedlarge transit times through the groundwater system. We use the isotopic andchemistry signature of the groundwater for detailed understanding of theorigin, fate, flow pathways, lag times and future loads of contaminants. Aunique set of high-quality tritium data over more than four decades,encompassing the time when the tritium spike from nuclear weapons testingmoved through the groundwater system, allows us to determine detailed agedistribution parameters of the water discharging into Lake Rotorua.The Rotorua volcanic groundwater system is complicated due to the highlycomplex geology that has evolved through volcanic activity. Vertical andsteeply inclined geological contacts preclude a simple flow model. Theextent of the Lake Rotorua groundwater catchment is difficult to establishdue to the deep water table in large areas, combined with inhomogeneousgroundwater flow patterns.Hierarchical cluster analysis of the water chemistry parameters providedevidence of the recharge source of the large springs near the lake shore,with discharge from the Mamaku ignimbrite through lake sediment layers.Groundwater chemistry and age data show clearly the source of nutrients thatcause lake eutrophication, nitrate from agricultural activities andphosphate from geologic sources. With a naturally high phosphate loadreaching the lake continuously via all streams, the only effective way tolimit algae blooms and improve lake water quality in such environments is bylimiting the nitrate load.The groundwater in the Rotorua catchment, once it has passed through thesoil zone, shows no further decrease in dissolved oxygen, indicating an absenceof bioavailable electron donors along flow paths that could facilitatemicrobial denitrification reactions. Nitrate from land-use activities thatleaches out of the root zone of agricultural land into the deeper part ofthe groundwater system must be expected to travel with the groundwater to the lake.The old age and the highly mixed nature of the water discharges imply a veryslow and lagged response of the streams and the lake to anthropogeniccontaminants in the catchment, such as nitrate. Using the age distributionas deduced from tritium time series data measured in the stream dischargesinto the lake allows prediction of future nutrient loads from historicland-use activities 50 years ago. For Hamurana Stream, the largest stream toLake Rotorua, it takes more than a hundred years for thegroundwater-dominated stream discharge to adjust to changes in land-useactivities. About half of the currently discharging water is still pristineold water, and after this old water is completely displaced by wateraffected by land use, the nitrogen load of Hamurana Stream willapproximately double. These timescales apply to activities that causecontamination, but also to remediation action.
机译:尽管近几十年来作出了缓解的努力,但罗托鲁瓦湖的水质在过去50年中稳步下降。地下水排放对延迟的土地利用集约化的延迟响应是50年前的原因,这是早期measurements测量所建议的原因,这表明通过地下水系统的运输时间较长。我们使用地下水的同位素和化学特征来详细了解起源,命运,流动路径,滞后时间和污染物的未来负荷。超过四十年的一组独特的高质量tri数据,涵盖了通过核武器测试而来的spike尖峰穿过地下水系统的时间,使我们能够确定向罗托鲁瓦湖排放的水的详细年龄分布参数。
罗托鲁瓦火山地下水系统非常复杂,这是由于通过火山活动演化而来的高度复杂的地质条件。垂直和陡峭的地质接触排除了简单的流动模型。由于大面积的深水位,很难确定罗托鲁瓦湖地下水集水区的范围,再加上地下水的非均匀流动模式。 水化学参数的层次聚类分析提供了附近大泉水补给源的证据。地下水化学和年龄数据清楚地表明了造成湖泊富营养化的营养素来源,农业活动产生的硝酸盐和地质来源产生的磷酸盐。天然的高磷酸盐负荷通过所有溪流连续到达湖泊,在这种环境下限制藻类繁殖和改善湖泊水质的唯一有效方法是限制硝酸盐负荷。 罗托鲁瓦流域的地下水一旦受到限制穿过土壤区的水没有显示出溶解氧的进一步减少,表明沿流径缺少可促进微生物反硝化反应的生物利用电子供体。从土地利用活动中渗出的硝酸盐会从农田的根部带入地下水系统的深处,必须与地下水一起运到湖泊中。 排水意味着溪流和湖泊对流域中人为污染物(例如硝酸盐)的响应非常缓慢且滞后。利用从tri流入湖中测得的tri时间序列数据得出的年龄分布,可以预测50年前历史土地利用活动中未来的养分含量。对于罗托鲁瓦湖最大的河流Hamurana流来说,以地下水为主的流排放要花费一百多年才能适应土地利用活动的变化。当前排放的水中约有一半仍是原始水,在土地使用影响下的水完全置换了旧水之后,Hamurana流的氮负荷将增加大约一倍。这些时间表适用于引起污染的活动,也适用于补救措施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号