...
首页> 外文期刊>Hydrology and Earth System Sciences >Disentangling timing and amplitude errors in streamflow simulations
【24h】

Disentangling timing and amplitude errors in streamflow simulations

机译:在流模拟中解开时序和幅度误差

获取原文
           

摘要

This article introduces an improvement in the Series Distance (SD) approach for the improved discrimination and visualization of timing and magnitude uncertainties in streamflow simulations. SD?emulates visual hydrograph comparison by distinguishing periods of low flow and periods of rise and recession in hydrological events. Within these periods, it determines the distance of two hydrographs not between points of equal time but between points that are hydrologically similar. The improvement comprises an automated procedure to emulate visual pattern matching, i.e.?the determination of an optimal level of generalization when comparing two hydrographs, a scaled error model which is better applicable across large discharge ranges than its non-scaled counterpart, and "error dressing", a concept to construct uncertainty ranges around deterministic simulations or forecasts. Error dressing includes an approach to sample empirical error distributions by increasing variance contribution, which can be extended from standard one-dimensional distributions to the two-dimensional distributions of combined time and magnitude errors provided by?SD. brbr In a case study we apply both the SD concept and a benchmark model?(BM) based on standard magnitude errors to a 6-year time series of observations and simulations from a small alpine catchment. Time–magnitude error characteristics for low flow and rising and falling limbs of events were substantially different. Their separate treatment within SD therefore preserves useful information which can be used for differentiated model diagnostics, and which is not contained in standard criteria like the Nash–Sutcliffe efficiency. Construction of uncertainty ranges based on the magnitude of errors of the BM approach and the combined time and magnitude errors of the SD approach revealed that the BM-derived ranges were visually narrower and statistically superior to the SD ranges. This suggests that the combined use of time and magnitude errors to construct uncertainty envelopes implies a trade-off between the added value of explicitly considering timing errors and the associated, inevitable time-spreading effect which inflates the related uncertainty ranges. Which effect dominates depends on the characteristics of timing errors in the hydrographs at hand. Our findings confirm that Series Distance is an elaborated concept for the comparison of simulated and observed streamflow time series which can be used for detailed hydrological analysis and model diagnostics and to inform us about uncertainties related to hydrological predictions./p
机译:本文介绍了“序列距离”(SD)方法的改进,以改进对流模拟中时间和幅度不确定性的区分和可视化。 SD通过区分水文事件中的低流量时期和上升和衰退时期来模拟可视水文图比较。在这些时间段内,它确定两个水位图的距离,而不是确定相同时间点之间的距离,而是确定水文相似点之间的距离。改进包括模拟视觉模式匹配的自动化程序,即,当比较两个水位图时确定最佳泛化水平,比未缩放比例的比例模型更适用于大流量范围的缩放比例误差模型和“误差修正” ”,在确定性模拟或预测周围构造不确定性的概念。误差修整包括一种通过增加方差贡献来采样经验误差分布的方法,该方法可以从标准的一维分布扩展到由?SD提供的组合时间和幅度误差的二维分布。 在案例研究中,我们将SD概念和基于标准幅度误差的基准模型(BM)应用于来自小型高山流域的6年时间序列的观测和模拟。低流量以及事件的上升和下降分支的时间-幅度误差特征有很大不同。因此,它们在SD中的单独处理保留了有用的信息,这些信息可用于差异化模型诊断,并且不包含在诸如Nash-Sutcliffe效率之类的标准条件中。根据BM方法的误差幅度以及SD方法的时间误差和幅度误差的组合来构造不确定范围,表明BM衍生的范围在视觉上更窄,并且在统计上优于SD范围。这表明,时间和幅度误差的组合使用可构造不确定性包络,这意味着在明确考虑时序误差的附加值与相关的不可避免的时间扩展效应之间进行权衡,后者会扩大相关的不确定性范围。哪种效果占优势取决于当前水位图中定时误差的特征。我们的发现证实了“序列距离”是一个精心设计的概念,用于比较模拟流和观测流时间序列,可用于详细的水文分析和模型诊断,并为我们提供与水文预报有关的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号