...
首页> 外文期刊>Hydrology and Earth System Sciences >A hydrogeologic framework for characterizing summer streamflow sensitivity to climate warming in the Pacific Northwest, USA
【24h】

A hydrogeologic framework for characterizing summer streamflow sensitivity to climate warming in the Pacific Northwest, USA

机译:用于表征美国西北太平洋夏季水流对气候变暖敏感性的水文地质框架

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Summer streamflows in the Pacific Northwest are largely derived from meltingsnow and groundwater discharge. As the climate warms, diminishing snowpackand earlier snowmelt will cause reductions in summer streamflow. Mostregional-scale assessments of climate change impacts on streamflow usedownscaled temperature and precipitation projections from general circulationmodels (GCMs) coupled with large-scale hydrologic models. Here we develop andapply an analytical hydrogeologic framework for characterizing summerstreamflow sensitivity to a change in the timing and magnitude of recharge ina spatially explicit fashion. In particular, we incorporate the role of deepgroundwater, which large-scale hydrologic models generally fail to capture,into streamflow sensitivity assessments. We validate our analyticalstreamflow sensitivities against two empirical measures of sensitivityderived using historical observations of temperature, precipitation, andstreamflow from 217 watersheds. In general, empirically and analyticallyderived streamflow sensitivity values correspond. Although the selectedwatersheds cover a range of hydrologic regimes (e.g., rain-dominated, mixtureof rain and snow, and snow-dominated), sensitivity validation was primarilydriven by the snow-dominated watersheds, which are subjected to a wider rangeof change in recharge timing and magnitude as a result of increasedtemperature. Overall, two patterns emerge from this analysis: first, areaswith high streamflow sensitivity also have higher summer streamflows ascompared to low-sensitivity areas. Second, the level of sensitivity andspatial extent of highly sensitive areas diminishes over time as the summerprogresses. Results of this analysis point to a robust, practical, andscalable approach that can help assess risk at the landscape scale,complement the downscaling approach, be applied to any climate scenario ofinterest, and provide a framework to assist land and water managers inadapting to an uncertain and potentially challenging future.
机译:西北太平洋的夏季水流主要来自融雪和地下水排放。随着气候变暖,积雪减少和较早融雪会导致夏季水流减少。大多数区域尺度的气候变化评估都对水流的使用产生了影响,其中一般循环模型(GCM)结合大规模水文模型对尺度下的温度和降水预测有所影响。在这里,我们开发并应用了一个分析性水文地质框架,用于以空间上明确的方式表征夏季水流对补给时间和补给量变化的敏感性。特别是,我们将深层地下水的作用纳入了流量敏感性评估中,而大型水文模型通常无法捕获深层地下水的作用。我们使用来自217个流域的温度,降水和水流的历史观测结果,根据两个经验性的敏感性测量方法验证了我们的分析水流敏感性。通常,根据经验和分析得出的流量灵敏度值是相对应的。尽管选定的流域涵盖了一系列的水文状况(例如,雨水为主,雨雪混合和雪为主),但灵敏度验证主要是由雪为主的流域驱动的,这些流域的补给时间和补给时间变化范围更大。温度升高导致的幅度总体而言,此分析得出了两种模式:首先,与低敏感度区域相比,高水流敏感度区域还具有较高的夏季水流。其次,随着夏季的进行,高度敏感区域的敏感性水平和空间范围会随着时间的推移而降低。分析结果表明,该方法可靠,实用,可扩展,可帮助评估景观尺度的风险,补充缩小比例的方法,适用于任何感兴趣的气候情况,并提供框架以协助土地和水管理人员适应不确定性并可能挑战未来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号