首页> 外文期刊>Hereditas >Association between morphological traits and yield components in the durra sorghums of Ethiopia
【24h】

Association between morphological traits and yield components in the durra sorghums of Ethiopia

机译:埃塞俄比亚杜拉高粱的形态性状与产量构成之间的联系

获取原文
           

摘要

The northeast quadrant of Africa is considered the center of origin and domestication for cultivated sorghum (Doggett 1965; Dillon et al. 2007). This can be recognized from abundant feral relatives in the region occurring in sympatry with cultivated forms (Ayana et al. 2000a; Tesso et al. 2008). Ethiopia, one of Vavilov's centers of origin for several crop species, hosts wide genetic variability for sorghum; all races of sorghum occur in the country's major sorghum-growing areas (Stemler et al. 1977; Doggett 1988). Sorghum is grown by almost all of the more than 80 ethnic nationalities of the country stretching from the hot, dry lowlands with a typical semiarid climate to the cool highlands with temperate weather. This assortment of environments along with the ethnic, social, and cultural diversity of the population have contributed to the development of diverse and distinct pool of sorghum germplasm, many of which are represented in international gene banks and the USDA/GRIN database (Gebrekidan 1973; ).Besides the diverse growing conditions and complex ethno-cultural settings, the different cropping systems practiced throughout Ethiopia (Davis and Woolley 1993; O'Leary and Smith 1999; Tamado and Eshetu 2000; Santalla et al. 2001) and the diverse uses of the crop (Osafo et al. 1993, Reed et al. 1986) may have also contributed to the evolution, cultivation, and maintenance of unique types of sorghum. For example as a result of years of cultivation under multiple cropping systems (Georgis et al. 1990), farmers in eastern Ethiopia have identified unique variants of the crop suited for intercropping with both legume and non-legume species. Likewise, continued use of the crop as a major ingredient for local brew in the north and as a chief source of energy and protein throughout the country has led to selection and maintenance of sorghum types with high fermentation efficiency and others with improved grain and nutritional quality (Singh and Axtell 1973; Gebrekidan and Kebede 1979). Moreover, the need for sorghum biomass as source of fuel, animal feed, and construction material has resulted not only in sustained cultivation of the tall, crook-necked durra but also in selective adaptation and production of sweet and high biomass types used as dual-purpose crops. The value of these traits is well recognized in modern plant breeding, which seeks to improve sorghum for use as a major food, feed, and bioenergy crop.The wealth of genetic variability in the Ethiopian sorghum germplasm sources has always attracted the attention of regional and international sorghum breeding programs. Several accessions possessing traits of economic importance have been identified among Ethiopian sorghums. These include sources of post-flowering drought tolerance (Haussmann et al. 2002; Kebede et al. 2001, Xu et al. 2000; Tao et al. 2000), high grain quality and high yield potential (Prasada Rao and Mengesha 1981), and sources of high lysine and high protein digestibility (Singh and Axtell 1973). Over the past 30 yr, the Ethiopian Inst. of Biodiversity Conservation (IBC) has collected and maintained more than 5000 sorghum accessions. However, although Ethiopia's diverse sorghum-growing environments are presumed to harbor wide genetic variability, many of these areas are inaccessible for germplasm collection. Thus, the accessions in the gene bank represent only a fraction of the existing in situ variability. Regardless, these are valuable resources and have already rendered service to the international sorghum research community in many ways.Attempts have been made to document the extent of genetic variability among these accessions (Teshome et al. 1997, 1999; Ayana et al. 2000b; Tunstall et al. 2001; Ayana and Bekele 2004; Mamo et al. 2007). But the efforts were fragmented in that they focused either on accessions originated only from specific localities or on a narrow set of samples too small to fully reflect the breadth of genetic variability that exists
机译:非洲东北象限被认为是栽培高粱的起源和驯化中心(Doggett 1965; Dillon等,2007)。这可以从与耕种形式共存的区域中丰富的野生亲戚中识别出来(Ayana等人2000a; Tesso等人2008)。埃塞俄比亚是瓦维洛夫(Vavilov)几种农作物的起源中心之一,拥有高粱的广泛遗传变异。高粱的所有种族都发生在该国主要的高粱生长地区(Stemler等,1977; Doggett 1988)。高粱几乎遍布该国80多个民族,从炎热干燥的低地,典型的半干旱气候,到凉爽的高地,气候温和。各种各样的环境以及人口的种族,社会和文化多样性促进了高粱种质的多样性和独特性的发展,其中许多在国际基因库和USDA / GRIN数据库中都有体现(Gebrekidan 1973;除了多样化的生长条件和复杂的民族文化环境外,埃塞俄比亚各地还实行了不同的耕作制度(Davis和Woolley 1993年; O'Leary和Smith 1999年; Tamado和Eshetu 2000年; Santalla等2001年)以及这种作物(Osafo等人,1993; Reed等人,1986)也可能为独特类型的高粱的进化,栽培和维持做出了贡献。例如,由于多年种植多种耕作制度的结果(Georgis等,1990),埃塞俄比亚东部的农民已经确定了适合与豆科植物和非豆科植物间作的作物的独特变种。同样,继续使用农作物作为北部本地酿造的主要成分,并作为全国能源和蛋白质的主要来源,导致选择和维持具有高发酵效率的高粱类型,并提高了谷物和营养品质的其他类型(Singh和Axtell 1973; Gebrekidan和Kebede 1979)。此外,对高粱生物质作为燃料,动物饲料和建筑材料的需求不仅导致持续种植高大,弯曲颈的杜拉,还导致选择性地适应和生产甜味和高生物量类型的双重用途。目的农作物。这些性状的价值在现代植物育种中得到了公认,该育种旨在提高高粱作为主要粮食,饲料和生物能源作物的使用。埃塞俄比亚高粱种质资源丰富的遗传变异性一直吸引着地区和世界各地的关注。国际高粱育种计划。埃塞俄比亚高粱中已鉴定出几种具有经济重要性的种质。这些包括花后耐旱性的来源(Haussmann等,2002; Kebede等,2001; Xu等,2000; Tao等,2000),高品质的谷物和高产潜力(Prasada Rao和Mengesha 1981),以及高赖氨酸和高蛋白质消化率的来源(Singh和Axtell 1973)。在过去的30年中,埃塞俄比亚研究所。生物多样性保护组织(IBC)已经收集并保存了5000多个高粱。然而,尽管埃塞俄比亚多样的高粱生长环境被认为具有广泛的遗传变异性,但其中许多地区仍无法进行种质收集。因此,基因库中的种质仅代表现有原位变异性的一小部分。无论如何,这些都是宝贵的资源,并且已经在许多方面为国际高粱研究界提供了服务。已经尝试证明这些种之间遗传变异的程度(Teshome等,1997,1999; Ayana等,2000b; 2001)。 Tunstall等,2001; Ayana和Bekele,2004; Mamo等,2007)。但是工作分散,因为它们要么集中于仅来自特定地区的种质,要么集中于太少而无法充分反映现有遗传变异性范围的狭窄样本

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号