首页> 外文期刊>Hereditas >Enhancing radiation hybrid mapping through whole genome amplification
【24h】

Enhancing radiation hybrid mapping through whole genome amplification

机译:通过全基因组扩增增强辐射杂交图谱

获取原文
           

摘要

Gene mapping is reaching its pinnacle with the progression of whole genome sequence assemblies to the ‘finished’ status. The assemblies will represent ultimate genetic maps in the form of complete, accurate, and annotated nucleotide sequences. The creation of such comprehensive genome sequence assemblies will however remain restricted to a few species in the near future since the recent breakthrough developments in DNA sequencing technology focus on short read lengths, which are more suitable for the efficient re-sequencing of genomes (Bentley 2006; Wheeler et al. 2008). Thus the construction of high-resolution recombination maps and physical maps remains an active area of research (Shifman et al. 2006; Matise et al. 2007; McKay et al. 2007), providing chromosomal locations and intermarker distances, landmarks for locating disease genes and species-specific frameworks for genome sequence assembly (Slonim et al. 1997). Radiation hybrid (RH) mapping has been exploited widely since 1990 (Cox et al. 1990) to construct physical maps. Since then, the technique has been refined and is used to construct high-resolution maps with high throughput techniques (McKay et al. 2007). High-resolution RH maps have proven to be useful for interrogating and amending genome sequence assemblies (Jann et al. 2006; McKay et al. 2007; Karere et al. 2008).One of the limiting factors for RH map construction is the cell culture required to generate sufficient DNA for marker mapping and for sharing of the resource. The propagation of RH clones is especially difficult for non mammalian species like fishes (Senger et al. 2006) and plants (Wardrop et al. 2002) requiring some form of sample amplification (Wardrop et al. 2002). To generate RH clones, chromosomes of donor cells are fragmented by a lethal dose of X-rays. The resulting chromosome fragments are rescued by fusion to a recipient cell (mostly of rodent origin), deficient for a selection gene, for example TK or HRPT, and subsequent integration of the donor genome chromosomal fragments into the recipient karyotype. After culture in selective medium, individual RH clones are isolated and propagated in cell culture in increasing volumes. DNA from the resulting RH clones is genotyped for markers of interest. The random nature of both the X-ray fragmentation and of the integration into the recipient genome enables the generation of genome maps by linkage mapping approaches. However, since RH cell lines are unstable (Graw et al. 1988; Goodfellow 1991; Walter and Goodfellow 1995), results obtained with the same clone can only be combined if DNA originating from the same passage of cells has been tested. Thus, one of the major challenges in the construction of RH maps is the finite amount of DNA available for genotyping. The instability of the RH cell lines further induces strongly varying signal intensities during genotyping since certain donor DNA sequences might only be present in varying fractions of the RH clone cells (Slonim et al. 1997). This problem necessitates duplicate genotyping for the verification of results and diminishes the precision of the RH mapping in cases of persisting ambiguity or induced artifacts. Ambiguous results are statistically very problematic and are often treated differently by the individual RH software packages (Agarwala et al. 2000). To meet the DNA quantity demands, the RH cell lines are typically passaged in multiple stages beginning with the establishment of a clone, passage into 24-well plates, and subsequent expansion in T25 flasks and roller bottles (Chowdhary et al. 2002). In cases where DNA stocks become inadequate, the hybrid cells have to been grown as a new passage. However, the extracted DNA then represents a different population of cells, usually necessitating re-typing of markers. The loss of unselected donor DNA fragments from somatic hybrid clones was already observed in early studies (Goss and Harris 1977) and the process itself is not disputed. However, th
机译:随着整个基因组序列装配向“完成”状态的发展,基因作图正达到其顶峰。这些程序集将以完整,准确和带注释的核苷酸序列的形式代表最终的遗传图谱。然而,由于DNA测序技术的最新突破性发展集中在短读长度上,这种全面的基因组序列装配体的创建将在不久的将来局限于少数物种,这更适合于有效的基因组重测序(Bentley 2006 ; Wheeler等人,2008)。因此,高分辨率重组图谱和物理图谱的构建仍然是研究的一个活跃领域(Shifman等,2006; Matise等,2007; McKay等,2007),提供了染色体的位置和标记间的距离,为疾病基因的定位奠定了基础。和用于基因组序列装配的物种特异性框架(Slonim等,1997)。自1990年以来,辐射混合(RH)映射已被广泛使用(Cox等,1990)来构造物理图。从那时起,该技术得到了完善,并被用于以高通量技术构建高分辨率地图(McKay等,2007)。高分辨率RH图谱已被证明可用于询问和修改基因组序列装配(Jann等人2006; McKay等人2007; Karere等人2008)。细胞培养物是RH图谱构建的限制因素之一。生成足够的DNA进行标记作图和资源共享所必需。对于非哺乳动物物种,如鱼类(Senger等,2006)和植物(Wardrop等,2002),需要某种形式的样品扩增(Wardrop等,2002),RH克隆的繁殖尤其困难。为了产生RH克隆,通过致死剂量的X射线将供体细胞的染色体片段化。通过融合至受体基因(主要是啮齿动物起源),缺乏选择基因(例如TK或HRPT)的受体细胞并随后将供体基因组染色体片段整合到受体核型中来拯救所得的染色体片段。在选择性培养基中培养后,分离出单个RH克隆,并在细胞培养物中以递增的体积繁殖。对得到的RH克隆的DNA进行基因分型,确定目标标记。 X射线片段化和整合入受体基因组的随机性使得能够通过连锁作图方法生成基因组图。但是,由于RH细胞系不稳定(Graw等,1988; Goodfellow 1991; Walter和Goodfellow 1995),所以只有在测试了相同细胞来源的DNA的情况下,才能合并使用同一克隆获得的结果。因此,构建RH图谱的主要挑战之一是可用于基因分型的DNA数量有限。由于某些供体DNA序列可能仅存在于RH克隆细胞的不同部分中,所以RH细胞系的不稳定性进一步诱导了基因分型过程中信号强度的强烈变化(Slonim et al。1997)。这个问题需要重复进行基因分型以验证结果,并在存在歧义或伪影的情况下降低RH映射的精度。从统计学上讲,模棱两可的结果存在很大问题,并且通常由各个RH软件包进行不同的处理(Agarwala等,2000)。为了满足DNA的数量需求,通常从多个阶段开始传代RH细胞系,从建立克隆开始,传到24孔板中,然后在T25烧瓶和滚瓶中扩增(Chowdhary等,2002)。如果DNA储备不足,则必须将杂交细胞作为新的传代培养。但是,提取的DNA然后代表了不同的细胞群体,通常需要重新键入标记。在早期研究中已经观察到从体细胞杂种克隆中丢失未选择的供体DNA片段(Goss和Harris 1977),并且该过程本身没有争议。但是,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号