首页> 外文期刊>Hereditas >Evaluation of genetic diversity in wild orchardgrass (Dactylis glomerata L.) based on AFLP markers
【24h】

Evaluation of genetic diversity in wild orchardgrass (Dactylis glomerata L.) based on AFLP markers

机译:基于AFLP标记的野生果园(Dactylis glomerata L.)遗传多样性评估

获取原文
           

摘要

Orchardgrass (Dactylis glomerata L.) is a highly variable perennial forage grass, widely cultivated in all temperate and subtropical growing regions of the world. It is native to northern Africa, Europe, temperate and tropic Asia (Hultén 1968; Tolmachev et al. 1995), and is widely grown for pasture and hay. It is also an important intercrop in fruit orchards and under shading. Because of its dense network of roots, orchardgrass is recommended as a part of a seed mix for erosion control (Anderson and Brooks 1975; Mclean and Clark 1980). Orchardgrass is indigenous to China where it is primarily distributed in the southwest and northwest areas, mainly growing on forest edges, in shrubs and in sub alpine meadows at elevations ranging from 1000 to 3600 m, where diploid (2n=2x=14) and tetrapoid (2n=4x=28) cytotypes grow in sympatry (Zhang et al. 1994; Zhou et al. 2000). The interest in studying wild orchardgrass germplasm has dramatically increased over the past 20 years since the cultivated varieties selected from the local wild sources offered more advantages including higher yield and adaptability to the environment than those introduced from other countries. Thus, three cultivated varieties from wild material has been developed recently, named cv. Gulin, cv. Baoxing and cv. Chuandong, reflecting their origin regions. The genetic resources of the wild germplasm present indigenously are to be exploited and conserved for breeding purpose. In order to achieve this, it is imperative to assess the genetic variability present among wild accessions.Variations in orchardgrass morphological features, distributional patterns, adaptive and agronomic characters, and allozymes are well documented (Lumaret et al. 1987; Lumaret and Borrientos 1990; Sahuquillo and Lumaret 1995; Volaire and Thomas 1995; Volaire 1995; Bretagnolle and Thompson 1996; Gauthier et al. 1998; Gautier and Lumaret 1999; Lindner et al. 1999; Sugiyama and Nakashima 1999; Tosun et al. 2002). DNA profiling techniques that have been successfully used in assessing genetic diversity and relatedness of orchardgrass germplasm include randomly amplified polymorphic DNA (RAPD) markers (Kolliker et al. 1999; Tuna et al. 2004; Zeng et al. 2006a) and inter-simple sequence repeat (ISSR) (Zeng et al. 2006b). Reeves et al. (1998) used amplified fragment length polymorphism (AFLP) DNA profiles to determine relationship between genome size and altitude of origin in natural populations of orchardgrass. Even though these studies demonstrated the usefullness of DNA profiling in assessing genetic differences in orchardgrass, none has focused on assessing genetic diversity and relationship within the wild Chinese orchardgrass.So far, information on the genetic diversity of wild Chinese orchardgrass at the DNA molecular level is still scarce. AFLP is an efficient, reproducible technique which combines the reliability of RFLP and the power of the PCR technique (Vos et al. 1995). Many forage grasses have been analyzed by this technique, including Lolium perenne (Guthridge et al. 2001), Phalaris aquatica (Rouf et al. 2005) and Eragrostis species (Ayele et al. 1999). Accordingly, we selected AFLP marker: (1) to estimate the levels of genetic diversity among 32 wild orchardgrass originated from various geographic locations in China, together with two wild accessions from USA, (2) to evaluate the genetic relationships between orchardgrass accessions, and (3) to characterize germplasms to select desirable genotypes for breeding and other utilization purposes.
机译:乌节草(Dactylis glomerata L.)是多年生草料多变的草,在世界所有温带和亚热带生长地区广泛种植。它原产于北非,欧洲,温带和热带亚洲(Hultén1968; Tolmachev et al。1995),广泛用于牧场和干草。它也是果园和遮荫下的重要间作作物。由于其密集的根系网络,建议将果园作为控制侵蚀的种子混合物的一部分(Anderson和Brooks 1975; Mclean和Clark 1980)。 Orchardgrass是中国的土生土长,主要分布在西南和西北地区,主要生长在森林边缘,灌木和亚高山草甸中,海拔从1000到3600 m,其中有二倍体(2n = 2x = 14)和四倍体(2n = 4x = 28)细胞型在交感神经中生长(Zhang等,1994; Zhou等,2000)。在过去的20年中,研究野生果园草种质的兴趣大大增加,因为从当地野生资源中选出的栽培品种比其他国家引进的品种具有更多的优势,包括更高的产量和对环境的适应性。因此,最近已经开发了三种来自野生材料的栽培品种,称为cv。 Gulin,简历。宝兴和简历。川东,反映出其出身地区。本地存在的野生种质的遗传资源将被开发和保存用于繁殖目的。为了实现这一目标,必须评估野生种之间的遗传变异性。果园的形态特征,分布模式,适应性和农艺性状以及同工酶的变化已得到充分记录(Lumaret等,1987; Lumaret和Borrientos,1990; Luxure等,1987)。 Sahuquillo和Lumaret 1995; Volaire和Thomas 1995; Volaire 1995; Bretagnolle和Thompson 1996; Gauthier等1998; Gautier和Lumaret 1999; Lindner等1999; Sugiyama和Nakashima 1999; Tosun等2002)。已成功用于评估果园种质遗传多样性和相关性的DNA分析技术包括随机扩增的多态DNA(RAPD)标记(Kolliker等,1999; Tuna等,2004; Zeng等,2006a)和简单序列重复(ISSR)(Zeng等,2006b)。里夫斯等。 (1998)使用扩增的片段长度多态性(AFLP)DNA图谱来确定果园天然种群中基因组大小与起源高度之间的关系。尽管这些研究证明了DNA谱分析在评估果园遗传差异方面的有用性,但没有一个研究侧重于评估野生中国果园内的遗传多样性和亲缘关系。仍然稀缺。 AFLP是一种有效的,可重复的技术,将RFLP的可靠性和PCR技术的强大功能相结合(Vos等,1995)。已经通过这种技术对许多草料进行了分析,包括黑麦草(Lolium perenne)(Guthridge等人,2001),水草ala(Phalaris aquatica)(Rouf等人,2005)和草龟属(Eragrostis)种(Ayele等人,1999)。因此,我们选择了AFLP标记:(1)估算来自中国不同地理位置的32个野生果园​​的遗传多样性水平,以及来自美国的两个野生种,(2)评估果园种之间的遗传关系,以及(3)表征种质,以选择理想的基因型用于育种和其他利用目的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号