...
首页> 外文期刊>Transportation Research Procedia >Assessing spatiotemporal correlations from data for short-term traffic prediction using multi-task learning
【24h】

Assessing spatiotemporal correlations from data for short-term traffic prediction using multi-task learning

机译:使用多任务学习从数据评估时空相关性以进行短期交通预测

获取原文
           

摘要

Traffic flow prediction is a fundamental problem for efficient transportation control and management. However, most current data-driven traffic prediction work found in the literature have focused on predicting traffic from an individual task perspective, and have not fully leveraged the implicit knowledge present in a road-network through space and time correlations. Such correlations are now far easier to isolate due to the recent profusion of traffic data sources and more specifically their wide geographic spread.In this paper, we take a multi-task learning (MTL) approach whose fundamental aim is to improve the generalization performance by leveraging the domain-specific information contained in related tasks that are jointly learned. In addition, another common factor found in the literature is that a historical dataset is used for the calibration and the assessment of the proposed approach, without dealing in any explicit or implicit way with the frequent challenges found in real-time prediction. In contrast, we adopt a different approach which faces this problem from a point of view of streams of data, and thus the learning procedure is undertaken online, giving greater importance to the most recent data, making data-driven decisions online, and undoing decisions which are no longer optimal. In the experiments presented we achieve a more compact and consistent knowledge in the form of rules automatically extracted from data, while maintaining or even improving, in some cases, the performance over single-task learning (STL).
机译:交通流量预测是有效的交通控制和管理的基本问题。然而,文献中发现的当前大多数数据驱动的交通预测工作都集中于从单个任务的角度预测交通,并且没有通过空间和时间相关性来充分利用道路网络中存在的隐性知识。由于交通数据源的涌现,尤其是其广泛的地理分布,这种关联现在更容易被隔离。在本文中,我们采用了一种多任务学习(MTL)方法,其基本目标是通过以下方法来提高泛化性能:利用共同学习的相关任务中包含的特定领域信息。另外,在文献中发现的另一个共同因素是,使用历史数据集进行所提出方法的校准和评估,而没有以任何显式或隐式方式处理实时预测中发现的常见挑战。相反,我们采用不同的方法从数据流的角度来面对这个问题,因此,学习过程是在线进行的,对最新数据更加重视,在线进行数据驱动的决策,并撤消决策不再是最佳的。在提出的实验中,我们以自动从数据中提取规则的形式获得了更紧凑,更一致的知识,同时在某些情况下保持甚至提高了单任务学习(STL)的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号