首页> 外文期刊>Water >Sorption Dynamics of Uranium onto Anion Exchangers
【24h】

Sorption Dynamics of Uranium onto Anion Exchangers

机译:铀在阴离子交换剂上的吸附动力学

获取原文
           

摘要

Uranium can occur naturally in groundwater which is used for drinking water production. Depending on its concentration levels, uranium elimination might become necessary. In German waterworks, anion exchange technology represents the state of the art for selective uranium removal. Operation times usually vary between one and two years until the exchanger is exhausted. In order to study uranium removal by anion exchange on a scientific base, column experiments at the pilot scale were performed in several waterworks. The resin with the highest capacity for uranium showed operation times between 120,000 and >300,000 bed volumes until breakthrough occurred, strongly depending on the water composition. To forecast uranium breakthrough on a theoretical base, a computer program was established using the model of combined film and surface diffusion. Both equilibrium data and kinetic parameters necessary for applying the model had been determined in previous research work. Modelled breakthrough curves were compared to experimental data from lab scale column experiments. As a rule, the time-dependency of the column effluent concentration can be well predicted by the theoretical model. By modelling the sorption dynamics, diffusion through the liquid film was identified as the rate controlling transport step. By increasing the filter velocity, the thickness of the liquid film decreases and the diffusion in the liquid accelerates. As a consequence for treatment plants in waterworks, the filter velocity can be increased by optimising the filter geometry. A smaller filter diameter is more appropriate for efficient uranium adsorption and longer times of operation might be achieved.
机译:铀天然存在于用于饮用水生产的地下水中。根据其浓度水平,可能有必要消除铀。在德国的水厂中,阴离子交换技术代表了选择性除铀的最新技术。运行时间通常在一年到两年之间变化,直到交换机耗尽为止。为了在科学的基础上研究通过阴离子交换去除铀的方法,在几个自来水厂进行了中试规模的柱实验。具有最高铀容量的树脂显示出运行时间在120,000床体积与> 300,000床体积之间,直到出现突破为止,这在很大程度上取决于水的成分。为了在理论基础上预测铀的突破,使用组合的膜和表面扩散模型建立了计算机程序。先前的研究工作已经确定了应用该模型所需的平衡数据和动力学参数。将建模的穿透曲线与实验室规模的柱实验的实验数据进行比较。通常,理论模型可以很好地预测塔流出物浓度的时间依赖性。通过对吸附动力学进行建模,将通过液膜的扩散确定为速率控制传输步骤。通过提高过滤器速度,液膜的厚度减小,并且液体中的扩散加速。因此,对于自来水厂的处理厂,可以通过优化过滤器的几何形状来提高过滤器的速度。较小的过滤器直径更适合有效地吸附铀,并且可以实现更长的运行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号