...
首页> 外文期刊>Procedia CIRP >The Life Cycle of Energy Consumption and Greenhouse Gas Emissions from Critical Minerals Recycling: Case of Lithium-ion Batteries
【24h】

The Life Cycle of Energy Consumption and Greenhouse Gas Emissions from Critical Minerals Recycling: Case of Lithium-ion Batteries

机译:关键矿物回收的能源消耗和温室气体排放的生命周期:锂离子电池的案例

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Sometimes the applications of lithium-ion batteries (LIBs) are labeled as “zero emissions”. However, the emissions generated in the procurement and production stage of supply chain is not considered. Battery production is one of the main contributors to emitting greenhouse gas (GHG) emissions through electric vehicle (EV) manufacturing. In this case, recycling of LIBs is recommended to reduce energy consumption and mitigate GHG emissions as well as result in considerable natural resource saving compared to landfill. Also, accelerating production of LIBs in the line of clean-energy technologies has led to a sharply increasing criticality of minerals such as lithium (Li), cobalt (Co) and manganese (Mn). The spent LIBs could consider the secondary source of these minerals. The environmental sustainable way of recovering critical minerals from this waste is very important. Therefore, the primary aim of this paper is to answer the question if recycling of LIBs to recover the mentioned critical minerals is an environmentally sustainable option. To address this question, two aspects are analyzed: energy consumption and GHG emissions. These aspects were analyzed through a dynamic simulation model based on the principles of the system dynamics methodology. We provide an environmental analysis of recycling of critical minerals from spent LIBs including LMO, lithium manganese oxide; LCO, lithium cobalt oxide; LFP, lithium iron phosphate; NMC, lithium nickel manganese cobalt oxide; and LiNCA, Lithium nickel cobalt aluminum oxide. The results show that recycling of LIBs helps to prevent the shortage of critical minerals from a mass flow perspective. However, from an environmental perspective, the current technology is not recommended to recover lithium from LIBs which leads 38-45% more consumption of energy and 16-20% higher air emissions than its primary production.
机译:有时将锂离子电池(LIB)的应用标记为“零排放”。但是,没有考虑在供应链的采购和生产阶段产生的排放。电池生产是通过电动汽车(EV)制造来排放温室气体(GHG)的主要贡献之一。在这种情况下,建议回收LIB以减少能源消耗并减少GHG排放,与垃圾填埋场相比可节省大量自然资源。此外,在清洁能源技术领域加快锂离子电池的生产已导致诸如锂(Li),钴(Co)和锰(Mn)等矿物的临界度急剧上升。用过的LIB可以考虑这些矿物的次要来源。从废物中回收关键矿物的环境可持续方法非常重要。因此,本文的主要目的是回答以下问题:回收LIB以回收上述关键矿物是否是环境可持续的选择。为了解决这个问题,分析了两个方面:能源消耗和温室气体排放。通过基于系统动力学方法论原理的动态仿真模型对这些方面进行了分析。我们提供了从废旧LIB中回收关键矿物的环境分析,包括LMO,锂锰氧化物; LCO,钴酸锂; LFP,磷酸铁锂; NMC,锂镍锰钴氧化物; LiNCA,锂镍钴铝氧化物。结果表明,从质量流量的角度来看,LIB的回收有助于防止关键矿物的短缺。但是,从环境角度来看,不建议使用当前技术从LIB中回收锂,这导致锂的消耗量比其主要产品多38-45%,空气排放量高16-20%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号