首页> 外文期刊>Theranostics >Bursting Bubbles and Bilayers
【24h】

Bursting Bubbles and Bilayers

机译:破裂气泡和双层膜

获取原文
           

摘要

This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol) (PEG) - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power) with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented, including those involving microbubbles to deliver cargo into a cell, and those - not necessarily involving microubbles - to release cargo from a phospholipid vesicle (or reverse sonoporation). It is shown that the rate of (reverse) sonoporation from liposomes correlates with phospholipid bilayer phase behavior, liquid-disordered phases giving appreciably faster release than liquid-ordered phases. Moreover, liquid-disordered phases exhibit evidence of two release mechanisms, which are described well mathematically by enhanced diffusion (possibly via dilation of membrane phospholipids) and irreversible membrane disruption, whereas liquid-ordered phases are described by a single mechanism, which has yet to be positively identified. The ability to tune release kinetics with bilayer composition makes reverse sonoporation of phospholipid vesicles a promising methodology for controlled drug delivery. Moreover, nesting of microbubbles inside vesicles constitutes a truly “theranostic” vehicle, one that can be used for both long-lasting, safe imaging and for controlled drug delivery.
机译:本文讨论超声,磷脂单层涂层的气泡,磷脂双层囊泡和细胞之间的各种相互作用。本文首先回顾了微泡物理模型,并发展为描述存在超声时的微泡动力学行为,然后讨论了如何使用此类模型预测惯性空化剖面。惯性空化对膜特性值(包括表面张力,表面膨胀粘度和面积膨胀模量)变化的敏感性预测表明,面积膨胀模量对惯性空化的影响最大。因此,综述了面积膨胀模量对化学组成,特别是聚乙二醇(PEG)的理论依赖性,并将不同PEG分子量和组成的惯性空化的预测与实验进行了比较。值得注意的是惯性空化对PEG分子量和摩尔分数的预测依赖性,或没有依赖性。具体而言,在所谓的蘑菇法中,惯性空化被预测与PEG分子量和摩尔分数无关。然而,在“刷子”状态下,惯性空化预计会随着PEG摩尔分数的增加而增加,但随着PEG分子量的降低而减小(至3/5的倒数倍数)。虽然可以在实验和理论之间达成极好的一致性,但结果表明,计算出的惯性空化曲线在很大程度上取决于用于预测惯性空化的标准。接下来是对将微气泡嵌套在微胶囊的水核内部以及如何显着增加惯性空化阈值的讨论。因此,嵌套提供了一种避免在成像和其他应用(例如声穿孔)过程中发生不必要的惯性空化和细胞死亡的方法。然后介绍了推定的声波穿孔机制,包括那些涉及微泡将货物递送到细胞中的机制,以及那些(不一定涉及微卵石)从磷脂囊泡释放货物的机制(或反向声穿孔)。结果表明,脂质体的(反向)声纳穿孔速率与磷脂双层相的行为有关,液体无序相比液体有序相的释放快得多。此外,液体无序相显示出两种释放机理的证据,它们在数学上通过增强的扩散(可能是通过膜磷脂的扩张)和不可逆的膜破坏来描述得很好,而液体无序相则是用单一机理描述的,至今还没有得到肯定的认同。用双层成分调节释放动力学的能力使得磷脂囊泡的反向声纳穿孔成为控制药物递送的有希望的方法。此外,微泡在囊泡中的嵌套构成了真正的“ theranostic”载体,可用于持久,安全的成像以及可控的药物输送。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号