首页> 外文期刊>Theory of Computing >Towards an Optimal Separation of Space and Length in Resolution
【24h】

Towards an Optimal Separation of Space and Length in Resolution

机译:寻求分辨率上空间和长度的最佳分离

获取原文
           

摘要

Most state-of-the-art satisfiability algorithms today are variants of the DPLL procedure augmented with clause learning. The main bottleneck for such algorithms, other than the obvious one of time, is the amount of memory used. In the field of proof complexity, the resources of time and memory correspond to the length and space of resolution proofs. There has been a long line of research trying to understand these proof complexity measures, as well as relating them to the width of proofs, i.e., the size of a largest clause in the proof, which has been shown to be intimately connected with both length and space. While strong results have been proven for length and width, our understanding of space has been quite poor. For instance, it has remained open whether the fact that a formula is provable in short length implies that it is also provable in small space (which is the case for length versus width), or whether these measures are unrelated in the sense that short proofs can be arbitrarily complex with respect to space. In this paper, we present some evidence indicating that the latter case should hold and provide a roadmap for how such an optimal separation result could be obtained. We do so by proving a tight bound of $Theta(sqrt{n})$ on the space needed for so-called pebbling contradictions over pyramid graphs of size $n$. This yields the first polynomial lower bound on space that is not a consequence of a corresponding lower bound on width, as well as an improvement of the weak separation of space and width of Nordstr?m (STOC 2006)from logarithmic to polynomial. A preliminary version of this paper appeared in the Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC'08).
机译:当今,大多数最新的可满足性算法都是DPLL程序的变体,其中增加了子句学习功能。除了显而易见的时间以外,此类算法的主要瓶颈是使用的内存量。在证明复杂性的领域中,时间和内存的资源与分辨率证明的长度和空间相对应。长期以来的研究试图理解这些证明复杂性的度量,并将它们与证明的宽度相关联,即证明中最大子句的大小,这已被证明与这两个长度密切相关。和空间。尽管在长度和宽度方面已经证明了强有力的结果,但是我们对空间的理解却很差。例如,一个公式在短长度上可证明的事实是否暗示它在小空间内也是可证明的(长度与宽度的情况),或者这些度量在短证明上是否无关紧要,这仍然是一个公开的问题。在空间方面可以任意复杂。在本文中,我们提供一些证据表明后一种情况应该成立,并为如何获得最佳分离结果提供了路线图。我们通过证明$ Theta( sqrt {n})$的紧密边界来实现,即在大小为$ n $的金字塔图上所谓的令人讨厌的矛盾所需的空间。这产生了空间上的第一个多项式下界,这不是相应的宽度下界的结果,并且改进了Nordstr?m的空间和宽度从对数到多项式的弱分离(STOC 2006)。本文的初稿出现在第40届ACM计算理论年度研讨会论文集(STOC'08)中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号