首页> 外文期刊>Theoretical Biology and Medical Modelling >Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans
【24h】

Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans

机译:转移熵的基因调控网络(GRNTE):一种重构基因调控相互作用的新方法,应用于植物病原菌疫霉病的案例研究

获取原文
       

摘要

The increasing amounts of genomics data have helped in the understanding of the molecular dynamics of complex systems such as plant and animal diseases. However, transcriptional regulation, although playing a central role in the decision-making process of cellular systems, is still poorly understood. In this study, we linked expression data with mathematical models to infer gene regulatory networks (GRN). We present a simple yet effective method to estimate transcription factors’ GRNs from transcriptional data. We defined interactions between pairs of genes (edges in the GRN) as the partial mutual information between these genes that takes into account time and possible lags in time from one gene in relation to another. We call this method Gene Regulatory Networks on Transfer Entropy (GRNTE) and it corresponds to Granger causality for Gaussian variables in an autoregressive model. To evaluate the reconstruction accuracy of our method, we generated several sub-networks from the GRN of the eukaryotic yeast model, Saccharomyces cerevisae. Then, we applied this method using experimental data of the plant pathogen Phytophthora infestans. We evaluated the transcriptional expression levels of 48 transcription factors of P. infestans during its interaction with one moderately resistant and one susceptible cultivar of yellow potato (Solanum tuberosum group Phureja), using RT-qPCR. With these data, we reconstructed the regulatory network of P. infestans during its interaction with these hosts. We first evaluated the performance of our method, based on the transfer entropy (GRNTE), on eukaryotic datasets from the GRNs of the yeast S. cerevisae. Results suggest that GRNTE is comparable with the state-of-the-art methods when the parameters for edge detection are properly tuned. In the case of P. infestans, most of the genes considered in this study, showed a significant change in expression from the onset of the interaction (0?h post inoculum - hpi) to the later time-points post inoculation. Hierarchical clustering of the expression data discriminated two distinct periods during the infection: from 12 to 36 hpi and from 48 to 72 hpi for both the moderately resistant and susceptible cultivars. These distinct periods could be associated with two phases of the life cycle of the pathogen when infecting the host plant: the biotrophic and necrotrophic phases. Here we presented an algorithmic solution to the problem of network reconstruction in time series data. This analytical perspective makes use of the dynamic nature of time series data as it relates to intrinsically dynamic processes such as transcription regulation, were multiple elements of the cell (e.g., transcription factors) act simultaneously and change over time. We applied the algorithm to study the regulatory network of P. infestans during its interaction with two hosts which differ in their level of resistance to the pathogen. Although the gene expression analysis did not show differences between the two hosts, the results of the GRN analyses evidenced rewiring of the genes’ interactions according to the resistance level of the host. This suggests that different regulatory processes are activated in response to different environmental cues. Applications of our methodology showed that it could reliably predict where to place edges in the transcriptional networks and sub-networks. The experimental approach used here can help provide insights on the biological role of these interactions on complex processes such as pathogenicity. The code used is available at https://github.com/jccastrog/GRNTE under GNU general public license 3.0.
机译:越来越多的基因组学数据有助于理解复杂系统(例如动植物疾病)的分子动力学。然而,转录调控尽管在细胞系统的决策过程中起着核心作用,但仍知之甚少。在这项研究中,我们将表达数据与数学模型相链接以推断基因调控网络(GRN)。我们提供了一种简单而有效的方法,可以根据转录数据估算转录因子的GRN。我们将基因对之间的相互作用(GRN的边缘)定义为这些基因之间的部分相互信息,这些信息考虑了时间以及一个基因相对于另一个基因可能存在的时间滞后。我们称这种方法为传递熵基因调控网络(GRNTE),它对应于自回归模型中高斯变量的格兰杰因果关系。为了评估我们方法的重建准确性,我们从真核酵母模型酿酒酵母的GRN中生成了几个子网。然后,我们利用植物病原菌疫霉的实验数据应用了该方法。我们使用RT-qPCR评估了感染致病疫霉与一种中度抗病品种和一种易感黄薯品种(马铃薯)的相互作用过程中48种转录因子的转录表达水平。借助这些数据,我们在与其他宿主相互作用的过程中重建了感染疫霉菌的调控网络。我们首先基于酵母菌GRN的真核数据集基于转移熵(GRNTE)评估了我们方法的性能。结果表明,正确调整边缘检测参数后,GRNTE可与最新技术相媲美。以致病疫霉为例,本研究中考虑的大多数基因从相互作用的开始(接种后0?h-hpi)到接种后的较晚时间点都显示出显着的表达变化。表达数据的分层聚类区分了感染期间的两个不同时期:中度抗病和易感品种均从12至36 hpi和48至72 hpi。当感染宿主植物时,这些不同的时期可能与病原体生命周期的两个阶段相关:生物营养阶段和坏死营养阶段。在这里,我们提出了一种针对时间序列数据中的网络重构问题的算法解决方案。这种分析观点利用了时间序列数据的动态性质,因为它涉及诸如转录调节之类的内在动态过程,是细胞的多个元素(例如转录因子)同时起作用并随时间变化的原因。我们应用该算法研究了感染疫霉菌与两个宿主之间的调控网络,这两个宿主对病原体的抵抗力水平不同。尽管基因表达分析没有显示出两个宿主之间的差异,但是GRN分析的结果证明了根据宿主抗性水平重新排列了基因的相互作用。这表明响应于不同的环境提示而激活了不同的调节过程。我们方法学的应用表明,它可以可靠地预测转录网络和子网络中边缘的放置位置。这里使用的实验方法可以帮助提供有关这些相互作用在诸如致病性等复杂过程中的生物学作用的见解。使用的代码可在https://github.com/jccastrog/GRNTE下以GNU通用公共许可证3.0获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号