首页> 外文期刊>The journal of physiological sciences >Microstructure-Based Monte Carlo Simulation of Ca2+ Dynamics Evoking Cardiac Calcium Channel Inactivation
【24h】

Microstructure-Based Monte Carlo Simulation of Ca2+ Dynamics Evoking Cardiac Calcium Channel Inactivation

机译:基于微结构的钙离子动力学引起心脏钙通道失活的蒙特卡洛模拟

获取原文
       

摘要

References(43) Ca2+ dynamics underlying cardiac excitation-contraction coupling are essential for heart functions. In this study, we constructed microstructure-based models of Ca2+ dynamics to simulate Ca2+ influx through individual L-type calcium channels (LCCs), an effective Ca2+ diffusion within the cytoplasmic space and in the dyadic space, and the experimentally observed calcium-dependent inactivation (CDI) of the LCCs induced by local and global Ca2+ sensing. The models consisted of LCCs with distal and proximal Ca2+ (Calmodulin-Ca2+ complex) binding sites. In one model, the intracellular space was organelle-free cytoplasmic space, and the other was with a dyadic space including sarcoplasmic reticulum membrane. The Ca2+ dynamics and CDI of the LCCs in the model with and without the dyadic space were then simulated using the Monte Carlo method. We first showed that an appropriate set of parameter values of the models with effectively extra-slow Ca2+ diffusion enabled the models to reproduce major features of the CDI process induced by the local and global sensing of Ca2+ near LCCs as measured with single and two spatially separated LCCs by Imredy and Yue (Neuron. 1992;9:197-207). The effective slow Ca2+ diffusion might be due to association and dissociation of Ca2+ and Calmodulin (CaM). We then examined how the local and global CDIs were affected by the presence of the dyadic space. The results suggested that in microstructure modeling of Ca2+ dynamics in cardiac myocytes, the effective Ca2+ diffusion under CaM-Ca2+ interaction, the nanodomain structure of LCCs for detailed CDI, and the geometry of subcellular space for modeling dyadic space should be considered.
机译:参考文献(43)心脏兴奋与收缩耦合背后的Ca2 +动力学对于心脏功能至关重要。在这项研究中,我们构建了基于微观结构的Ca2 +动力学模型,以模拟Ca2 +通过单个L型钙通道(LCC)的流入,有效的Ca2 +在细胞质空间和二元空间中的扩散以及实验观察到的钙依赖性失活局部和全局Ca2 +感应诱导的LCCs(CDI)。该模型由具有远端和近端Ca2 +(钙调蛋白-Ca2 +复合物)结合位点的LCC组成。在一种模型中,细胞内空间是无细胞器的细胞质空间,而另一种是具有包括肌质网膜的二元空间。然后,使用蒙特卡洛方法模拟了有和没有二进位空间的模型中LCC的Ca2 +动力学和CDI。我们首先表明,通过有效地超慢Ca2 +扩散,模型的一组适当的参数值使模型能够重现LDI附近Ca2 +的局部和全局感知所诱导的CDI过程的主要特征,如在单个和两个空间上分开测量的情况下Imredy和Yue(Neuron。1992; 9:197-207)撰写的LCC。有效的Ca2 +缓慢扩散可能是由于Ca2 +与钙调蛋白(CaM)的缔合和解离。然后,我们研究了二进位空间的存在如何影响本地和全球CDI。结果表明,在心肌细胞中Ca2 +动力学的微观结构建模中,应考虑CaM-Ca2 +相互作用下的有效Ca2 +扩散,用于详细CDI的LCC的纳米域结构以及用于建模二进位空间的亚细胞空间的几何形状。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号