首页> 外文期刊>The Journal of Nuclear Medicine >18F-Flortanidazole Hypoxia PET Holds Promise as a Prognostic and Predictive Imaging Biomarker in a Lung Cancer Xenograft Model Treated with Metformin and Radiotherapy
【24h】

18F-Flortanidazole Hypoxia PET Holds Promise as a Prognostic and Predictive Imaging Biomarker in a Lung Cancer Xenograft Model Treated with Metformin and Radiotherapy

机译:在二甲双胍和放疗治疗的肺癌异种移植模型中,18F-氟硝唑低氧PET有望作为一种预后和预测性成像生物标志物。

获取原文
           

摘要

Metformin may improve tumor oxygenation and thus radiotherapy response, but imaging biomarkers for selection of suitable patients are still under investigation. First, we assessed the effect of acute metformin administration on non–small cell lung cancer xenograft tumor hypoxia using PET imaging with the hypoxia tracer 18F-flortanidazole. Second, we verified the effect of a single dose of metformin before radiotherapy on long-term treatment outcome. Third, we examined the potential of baseline 18F-flortanidazole as a prognostic or predictive biomarker for treatment response. Methods: A549 tumor–bearing mice underwent a 18F-flortanidazole PET/CT scan to determine baseline tumor hypoxia. The next day, mice received a 100 mg/kg intravenous injection of metformin. 18F-flortanidazole was administered intravenously 30 min later, and a second PET/CT scan was performed to assess changes in tumor hypoxia. Two days later, the mice were divided into 3 therapy groups: controls (group 1), radiotherapy (group 2), and metformin + radiotherapy (group 3). Animals received saline (groups 1–2) or metformin (100 mg/kg; group 3) intravenously, followed by a single radiotherapy dose of 10 Gy (groups 2–3) or sham irradiation (group 1) 30 min later. Tumor growth was monitored triweekly by caliper measurement, and tumor volume relative to baseline was calculated. The tumor doubling time (TDT), that is, the time to reach twice the preirradiation tumor volume, was defined as the endpoint. Results: Thirty minutes after metformin treatment, 18F-flortanidazole demonstrated a significant change in tumor hypoxia, with a mean intratumoral reduction in 18F-flortanidazole tumor-to-background ratio (TBR) from 3.21 ± 0.13 to 2.87 ± 0.13 (P = 0.0001). Overall, relative tumor volume over time differed across treatment groups (P 0.0001). Similarly, the median TDT was 19, 34, and 52 d in controls, the radiotherapy group, and the metformin + radiotherapy group, respectively (log-rank P 0.0001). Both baseline 18F-flortanidazole TBR (hazard ratio, 2.0; P = 0.0004) and change from baseline TBR (hazard ratio, 0.39; P = 0.04) were prognostic biomarkers for TDT irrespective of treatment, and baseline TBR predicted metformin-specific treatment effects that were dependent on baseline tumor hypoxia. Conclusion: Using 18F-flortanidazole PET imaging in a non–small cell lung cancer xenograft model, we showed that metformin may act as a radiosensitizer by increasing tumor oxygenation and that baseline 18F-flortanidazole shows promise as an imaging biomarker.
机译:二甲双胍可能会改善肿瘤的氧合作用,从而改善放射治疗的反应,但用于选择合适患者的影像学生物标志物仍在研究中。首先,我们使用缺氧示踪剂18F-氟苯并咪唑对PET成像评估了急性二甲双胍对非小细胞肺癌异种移植肿瘤缺氧的影响。其次,我们验证了放疗前单剂量二甲双胍对长期治疗效果的影响。第三,我们检查了基线18F-氟他尼唑作为治疗反应的预后或预测生物标志物的潜力。方法:对A549荷瘤小鼠进行18F-氟他尼唑PET / CT扫描以确定基线肿瘤缺氧。第二天,小鼠接受了100 mg / kg的二甲双胍静脉注射。 30分钟后静脉注射18F-氟他尼唑,并进行第二次PET / CT扫描以评估肿瘤缺氧的变化。两天后,将小鼠分为3个治疗组:对照组(第1组),放疗(第2组)和二甲双胍+放疗(第3组)。动物静脉注射生理盐水(1-2组)或二甲双胍(100 mg / kg;第三组),然后在30分钟后单次放射治疗剂量10 Gy(2-3组)或假放射(第一组)。通过卡尺测量每三周监测一次肿瘤生长,并计算相对于基线的肿瘤体积。将肿瘤倍增时间(TDT),即达到两倍于放射前肿瘤体积的时间定义为终点。结果:二甲双胍治疗后30分钟,18F-氟他尼唑显示出了肿瘤缺氧的显着变化,平均瘤内18F-氟他尼唑的肿瘤与背景之比(TBR)从3.21±0.13降至2.87±0.13(P = 0.0001) 。总体而言,各治疗组随时间的相对肿瘤体积不同(P <0.0001)。同样,对照组,放疗组和二甲双胍+放疗组的TDT中位数分别为19、34和52 d(log-rank P <0.0001)。基线18F-氟他尼唑TBR(危险比2.0; P = 0.0004)和相对于基线TBR的变化(危险比0.39; P = 0.04)都是TDT的预后生物标志物,而基线TBR预测的二甲双胍特异性治疗效果是依赖于基线肿瘤缺氧。结论:在非小细胞肺癌异种移植模型中使用18F-氟他尼唑PET显像,我们显示二甲双胍可能通过增加肿瘤氧合而充当放射增敏剂,并且基线18F-氟他尼唑显示出有望作为影像学生物标志物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号