...
首页> 外文期刊>The Journal of general physiology >Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels II: A periodic paralysis mutation in NaV1.4 (L689I)
【24h】

Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels II: A periodic paralysis mutation in NaV1.4 (L689I)

机译:电压传感器的运动描述了电压门控钠通道的缓慢失活II:NaV1.4(L689I)中的周期性麻痹突变

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In skeletal muscle, slow inactivation (SI) of NaV1.4 voltage-gated sodium channels prevents spontaneous depolarization and fatigue. Inherited mutations in NaV1.4 that impair SI disrupt activity-induced regulation of channel availability and predispose patients to hyperkalemic periodic paralysis. In our companion paper in this issue (Silva and Goldstein. 2013. J. Gen. Physiol. http://dx.doi.org/10.1085/jgp.201210909), the four voltage sensors in NaV1.4 responsible for activation of channels over microseconds are shown to slowly immobilize over 1–160 s as SI develops and to regain mobility on recovery from SI. Individual sensor movements assessed via attached fluorescent probes are nonidentical in their voltage dependence, time course, and magnitude: DI and DII track SI onset, and DIII appears to reflect SI recovery. A causal link was inferred by tetrodotoxin (TTX) suppression of both SI onset and immobilization of DI and DII sensors. Here, the association of slow sensor immobilization and SI is verified by study of NaV1.4 channels with a hyperkalemic periodic paralysis mutation; L689I produces complex changes in SI, and these are found to manifest directly in altered sensor movements. L689I removes a component of SI with an intermediate time constant (~10 s); the mutation also impedes immobilization of the DI and DII sensors over the same time domain in support of direct mechanistic linkage. A model that recapitulates SI attributes responsibility for intermediate SI to DI and DII (10 s) and a slow component to DIII (100 s), which accounts for residual SI, not impeded by L689I or TTX.
机译:在骨骼肌中,NaV1.4电压门控钠通道的缓慢失活(SI)可防止自发去极化和疲劳。 NaV1.4的遗传突变会损害SI,从而破坏活动诱导的通道可用性调节,并使患者易患高钾血症性周期性麻痹。在本期的同伴论文中(Silva和Goldstein。2013。J.Gen. Physiol。http://dx.doi.org/10.1085/jgp.201210909),NaV1.4中的四个电压传感器负责激活通道随着SI的发展,超过1微秒的时间会缓慢固定,并在从SI恢复后恢复活动性。通过连接的荧光探针评估的各个传感器运动在电压依赖性,时间过程和幅度方面是不相同的:DI和DII跟踪SI的发作,而DIII似乎反映了SI的恢复。通过河豚毒素(TTX)抑制SI发作以及DI和DII传感器的固定化来推断因果关系。在这里,慢传感器固定和SI的关联通过研究NaV1.4通道伴有高钾性周期性麻痹突变来验证。 L689I在SI中产生复杂的变化,并且发现这些变化直接体现在传感器运动的改变中。 L689I除去中间时间常数(〜10 s)的SI分量;这种突变也阻碍了DI和DII传感器在同一时域上的固定化,以支持直接的机械连接。概括SI的模型将中间SI的责任归于DI和DII(10 s),将DSI的慢分量归因于DIII(100 s),这说明了剩余的SI,不受L689I或TTX的阻碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号