...
首页> 外文期刊>The Journal of general physiology >Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel
【24h】

Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel

机译:Kv1.2钾离子通道中与电压有关的门控和门控电荷测量

获取原文
           

摘要

Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker , and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ~25% less than the well-established 13–14 eo in Shaker . Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ~50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker , where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker ’s, accounting for the smaller Kv1.2 gating charge.
机译:自2005年发布哺乳动物电压门控钾离子通道Kv1.2的X射线结构以来,人们对离子通道的电压传感器有了很多了解。高分辨率的Kv通道结构数据可以对收集到的许多电生理结果进行结构解释在各种离子通道中,最著名的是Shaker,并允许开发激活机制的精细计算模拟。从Shaker进行功能测量的结构解释的基本前提是,此通道和Kv1.2具有相同的特性,因此,将来自两个通道的数据进行关联将是一项艰巨的任务。我们通过测量Kv1.2电压相关的门控和每个通道的电荷来测试这些假设。我们发现,Kv1.2门控电荷接近10个基本电荷(eo),比摇床中成熟的13–14 eo约低25%。接下来,我们中和了Kv1.2 S4跨膜片段中的阳性残基,以研究降低门控电荷的原因,发现用谷氨酰胺代替R1会使电压敏感性降低至野生型通道值的〜50%,随后的精氨酸的影响要小得多。这些数据与Shaker中电荷中和的影响形成鲜明对比,在Shaker中,去除前四个基本残基可将门控电荷减少大致相同的量。鉴于这些差异,我们建议Kv1.2和Shaker的电压感测域(VSD)可能经历相同的物理运动,但分隔Kv1.2的VSD中含水缝隙的隔膜可能比Shaker厚,占较小的Kv1.2选通费用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号