首页> 外文期刊>The Internet Journal of Radiology >Word Reading Processing In Children: A Functional MRI Study At 1.5 T
【24h】

Word Reading Processing In Children: A Functional MRI Study At 1.5 T

机译:儿童单词阅读处理:1.5 T时的功能性MRI研究

获取原文
           

摘要

Functional MRI is a tool for investigating brain function non-invasively. Our study addresses the question whether functional MRI can be used in children to differentiate activated brain areas in phonological tasks. A set of hierarchically structured reading tasks was used in 17 healthy right-handed children (median 14y 1m). FMRI was acquired during perception of letter strings, silent reading of non-words, silent reading of words, and during performance of a task with phonological transformation using a T2* weighted GRE sequence with three slices (TR/TE/α 68ms/50ms/10°). Postprocessing was done using SPM99. Activation was observed only in Broca's area while silent reading of real words. Phonological strategies (non-word reading and transformation task) resulted in activation in the frontal and temporal regions, as well as bilaterally in Broca`s area in the inferior frontal gyrus. Conclusion: The observed activation patterns in children are different to reported areas in adults. This could be caused by the stronger use of the grapheme-to-phoneme mapping as a serial process in children in contrast to adults. Introduction Until recently, studies of brain function in children have been limited to indirect techniques like electroencephalography (EEG) and event-related potentials, which provide information regarding the timing of sensory and cognitive events. Other brain imaging techniques, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) are available, but these techniques require exposure to radiation. Consequently, these neuroimaging methods are limited in their use in pediatrics. In recent years, functional magnetic resonance imaging (fMRI) has been introduced to developmental research. The principle of this noninvasive technique is based on the so called BOLD-effect (blood oxygenation level dependent effect) which is caused by the different behavior of oxygenated and desoxygenated hemoglobin (HbO2 and deHbO2) in a magnetic field [1]. Neuronal activation causes an increase in regional blood flow and blood volume which in turn overcompensates for the increase in oxygen use. The result is a locally decreased concentration of paramagnetic deHbO2 at the capillary venous level and, therefore, a smaller susceptibility difference between venous blood and brain parenchyma, which leads to a local signal intensity increase on T2*-weighted sequences (gradient echo conventional sequences or echo planar imaging)[2]. Depending on the field of view, an in-plane resolution of up to 1mm is possible, which overcomes the restricted spatial resolution of SPECT or PET. Noninvasiveness, independence from any exogenous tracer, relatively high spatial and temporal resolution, and the possibility to acquire simultaneously activation and topographic data are the main advantages of functional MRI in comparison to other neuroimaging methods. Functional MRI may contribute to a better understanding of functional anatomy of reading in the intact human brain and its development. To date, only few pediatric functional MRI studies have been published [3].Former functional imaging studies in adults using PET and fMRI have demonstrated that different brain areas are involved in reading processes [4,5,6,7,8,9,10,11,12,13,14]. These studies have also improved the knowledge about the functional specialisation of cortical regions that subserve different aspects of word processing in normal reading adults. With respect to pediatrics the functional mapping of language prior to neurosurgery was studied [15]. In a comparative fMRI study of dyslexic children and adolescents restricted activation of brain regions during various language tasks could be shown compared to normal reading adults [16]. Significantly less activity in the inferior frontal gyrus and the supramarginal gyrus in the dyslexic group could be observed in a comparison of dyslexic adolescents and age-matched controls using a phoneme discrimination task [17].
机译:功能性MRI是非侵入式研究脑功能的工具。我们的研究解决了功能性MRI是否可以在儿童中用于区分语音任务中激活的大脑区域的问题。在17名健康的惯用右手儿童(中位数14y 1m)中使用了一组层次结构的阅读任务。在感知字母字符串,静默阅读非单词,静默阅读单词以及使用T2 *加权GRE序列进行三层语音翻译(TR / TE /α68ms / 50ms / 10°)。后处理是使用SPM99完成的。仅在Broca区域观察到激活,而无声地读了真实的单词。语音策略(非单词阅读和转换任务)导致额叶和颞叶区域的激活,以及额下回的布罗卡区域的双向激活。结论:儿童观察到的激活方式与成人报道的区域不同。这可能是由于与成人相比,儿童中音素到音素映射作为串行过程的更广泛使用。引言直到最近,对儿童脑功能的研究还仅限于间接技术,如脑电图(EEG)和与事件相关的电位,这些技术提供有关感觉和认知事件发生时间的信息。还可以使用其他脑部成像技术,例如正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT),但是这些技术需要暴露于辐射。因此,这些神经成像方法在儿科中的使用受到限制。近年来,功能磁共振成像(fMRI)已被引入发展研究。这种无创技术的原理是基于所谓的BOLD效应(血液氧合水平依赖性效应),该效应是由磁场中氧化和脱氧血红蛋白(HbO2和deHbO2)的不同行为引起的[1]。神经元的激活导致局部血流量和血容量的增加,从而过度补偿了氧气的使用量的增加。结果是在毛细管静脉水平上顺磁性deHbO2的浓度局部降低,因此,静脉血和脑实质之间的磁化率差异较小,这导致T2 *加权序列(梯度回波常规序列或回波平面成像)[2]。根据视场的不同,面内分辨率可能高达1mm,从而克服了SPECT或PET受限的空间分辨率。与其他神经影像学方法相比,功能性MRI的主要优点是无创性,与任何外源示踪剂无关,相对较高的空间和时间分辨率以及同时获取激活和地形数据的可能性。功能性MRI可能有助于更好地理解完整的人脑中的阅读功能解剖及其发育。迄今为止,仅发表了很少的儿科功能性MRI研究[3]。成人使用PET和fMRI进行的功能性成像研究表明,不同的大脑区域参与了阅读过程[4,5,6,7,8,9, 10,11,12,13,14]。这些研究还提高了对皮质区域功能专业化的认识,而皮质区域在正常阅读成年人中为词处理的不同方面提供了服务。关于儿科,研究了神经外科手术之前语言的功能映射[15]。在一项针对阅读障碍儿童和青少年的功能性MRI研究中,与正常阅读的成年人相比,可以显示在各种语言任务期间大脑区域的受限激活[16]。通过使用音素识别任务比较阅读困难的青少年和与年龄匹配的对照者,阅读困难的组的下额回和上颌上回的活动明显减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号