...
首页> 外文期刊>The Cryosphere Discussions >Antarctic sub-shelf melt rates via PICO
【24h】

Antarctic sub-shelf melt rates via PICO

机译:通过PICO的南极子架融化速率

获取原文
           

摘要

Ocean-induced melting below ice shelves is one of the dominant drivers for mass loss from the Antarctic Ice Sheet at present. An appropriate representation of sub-shelf melt rates is therefore essential for model simulations of marine-based ice sheet evolution. Continental-scale ice sheet models often rely on simple melt-parameterizations, in particular for long-term simulations, when fully coupled ice–ocean interaction becomes computationally too expensive. Such parameterizations can account for the influence of the local depth of the ice-shelf draft or its slope on melting. However, they do not capture the effect of ocean circulation underneath the ice shelf. Here we present the Potsdam Ice-shelf Cavity mOdel (PICO), which simulates the vertical overturning circulation in ice-shelf cavities and thus enables the computation of sub-shelf melt rates consistent with this circulation. PICO is based on an ocean box model that coarsely resolves ice shelf cavities and uses a boundary layer melt formulation. We implement it as a module of the Parallel Ice Sheet Model (PISM) and evaluate its performance under present-day conditions of the Southern Ocean. We identify a set of parameters that yield two-dimensional melt rate fields that qualitatively reproduce the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. PICO captures the wide range of melt rates observed for Antarctic ice shelves, with an average of about 0.1 m?asup?1/sup for cold sub-shelf cavities, for example, underneath Ross or Ronne ice shelves, to 16 m?asup?1/sup for warm cavities such as in the Amundsen Sea region. This makes PICO a computationally feasible and more physical alternative to melt parameterizations purely based on ice draft geometry.
机译:目前,海洋引起的冰架下方融化是造成南极冰盖质量损失的主要驱动因素之一。因此,对于基于海洋的冰盖演化的模型模拟,适当地表示子架融化速率是必不可少的。当完全耦合的冰海相互作用在计算上过于昂贵时,大陆规模的冰盖模型通常依赖于简单的熔体参数化,特别是对于长期模拟。这样的参数化可以解释冰架吃水的局部深度或其斜率对融化的影响。但是,它们没有捕捉到冰架下方海洋循环的影响。在这里,我们介绍了波茨坦冰架腔模型(PICO),该模型可模拟冰架腔中的垂直翻转循环,从而能够计算与此循环一致的子架融化速率。 PICO基于海洋箱模型,可以粗略地解析冰架腔并使用边界层融化配方。我们将其作为平行冰盖模型(PISM)的模块来实现,并评估其在当今南大洋条件下的性能。我们确定了一组参数,这些参数产生了二维熔解速率场,定性地再现了接地线附近相当高的熔解和向产犊前部降低熔解或重新冻结的典型模式。 PICO捕获的南极冰架融化速率范围很广,例如在罗斯或罗讷冰架下方的冷子架型腔的平均融化速率约为0.1 m?a ?1 。 16 m?a ?1 用于温暖的空腔,例如在阿蒙森海地区。这使PICO成为纯粹基于冰层吃水几何形状的融化参数化在计算上可行且更具物理性的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号