首页> 外文期刊>The Cryosphere Discussions >Spatial variability in snow precipitation and accumulation in COSMO–WRF simulations and radar estimations over complex terrain
【24h】

Spatial variability in snow precipitation and accumulation in COSMO–WRF simulations and radar estimations over complex terrain

机译:COSMO-WRF模拟和复杂地形中雷达估计的积雪和积雪空间变异性

获取原文
       

摘要

Snow distribution in complex alpine terrain and its evolution in the future climate is important in a variety of applications including hydropower, avalanche forecasting and freshwater resources. However, it is still challenging to quantitatively forecast precipitation, especially over complex terrain where the interaction between local wind and precipitation fields strongly affects snow distribution at the mountain ridge scale. Therefore, it is essential to retrieve high-resolution information about precipitation processes over complex terrain. Here, we present very-high-resolution Weather Research and Forecasting model (WRF) simulations (COSMO–WRF), which are initialized by 2.2?km resolution Consortium for Small-scale Modeling (COSMO) analysis. To assess the ability of COSMO–WRF to represent spatial snow precipitation patterns, they are validated against operational weather radar measurements. Estimated COSMO–WRF precipitation is generally higher than estimated radar precipitation, most likely due to an overestimation of orographic precipitation enhancement in the model. The high precipitation amounts also lead to a higher spatial variability in the model compared to radar estimates. Overall, an autocorrelation and scale analysis of radar and COSMO–WRF precipitation patterns at a horizontal grid spacing of 450?m show that COSMO–WRF captures the spatial variability normalized by the domain-wide variability in precipitation patterns down to the scale of a few kilometers. However, simulated precipitation patterns systematically show a lower variability on the smallest scales of a few hundred meters compared to radar estimates. A comparison of spatial variability for different model resolutions gives evidence for an improved representation of local precipitation processes at a horizontal resolution of 50?m compared to 450?m. Additionally, differences of precipitation between 2830?m above sea level and the ground indicate that near-surface processes are active in the model.
机译:在复杂的高山地形中的积雪及其在未来气候中的演变在包括水力发电,雪崩预报和淡水资源在内的各种应用中都很重要。然而,定量地预报降水仍然是一项挑战,特别是在复杂的地形上,那里的局部风和降水场之间的相互作用会强烈影响山脊尺度上的积雪。因此,检索有关复杂地形上降水过程的高分辨率信息至关重要。在这里,我们介绍了非常高分辨率的天气研究和预报模型(WRF)模拟(COSMO–WRF),该模拟由2.2?km分辨率的小规模建模联盟(COSMO)分析初始化。为了评估COSMO–WRF表示空间积雪模式的能力,已针对运行中的气象雷达测量结果对它们进行了验证。估计的COSMO–WRF降水通常高于估计的雷达降水,这很可能是由于高估了模型中地形降水的增加。与雷达估算值相比,高降水量还导致模型中较高的空间变异性。总体而言,在水平网格间距为450?m的情况下,雷达和COSMO-WRF降水模式的自相关和尺度分析表明,COSMO-WRF捕获了由降水模式的全域变化归一化到几级的空间变异公里。但是,与雷达估算值相比,模拟的降水模式在数百米的最小尺度上系统地显示出较低的变异性。比较不同模型分辨率的空间变异性可提供证据,以50µm的水平分辨率(450µm)改善了局部降水过程的表示。此外,海拔2830?m与地面之间的降水差异表明该模型中活跃的近地表过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号