首页> 外文期刊>The Cryosphere Discussions >Estimating ice phenology on large northern lakes from AMSR-E: algorithm development and application to Great Bear Lake and Great Slave Lake, Canada
【24h】

Estimating ice phenology on large northern lakes from AMSR-E: algorithm development and application to Great Bear Lake and Great Slave Lake, Canada

机译:利用AMSR-E估算北部大型湖泊的冰物候:算法开发及在加拿大大熊湖和大奴湖的应用

获取原文
       

摘要

Time series of brightness temperatures (iT/isubB/sub) from the Advanced Microwave Scanning Radiometera??Earth Observing System (AMSR-E) are examined to determine ice phenology variables on the two largest lakes of northern Canada Great Bear Lake (GBL) and Great Slave Lake (GSL). iT/isubB/sub measurements from the 18.7, 23.8, 36.5, and 89.0 GHz channels (H- and V- polarization) are compared to assess their potential for detecting freeze-onset/melt-onset and ice-on/ice-off dates on both lakes. The 18.7 GHz (H-pol) channel is found to be the most suitable for estimating these ice dates as well as the duration of the ice cover and ice-free seasons. A new algorithm is proposed using this channel and applied to map all ice phenology variables on GBL and GSL over seven ice seasons (2002a??2009). Analysis of the spatio-temporal patterns of each variable at the pixel level reveals that (1) both freeze-onset and ice-on dates occur on average about one week earlier on GBL than on GSL (Day of Year (DY) 318 and 333 for GBL; DY 328 and 343 for GSL); (2) the freeze-up process or freeze duration (freeze-onset to ice-on) takes a slightly longer amount of time on GBL than on GSL (about 1 week on average); (3) melt-onset and ice-off dates occur on average one week and approximately four weeks later, respectively, on GBL (DY 143 and 183 for GBL; DY 135 and 157 for GSL); (4) the break-up process or melt duration (melt-onset to ice-off) lasts on average about three weeks longer on GBL; and (5) ice cover duration estimated from each individual pixel is on average about three weeks longer on GBL compared to its more southern counterpart, GSL. A comparison of dates for several ice phenology variables derived from other satellite remote sensing products (e.g. NOAA Interactive Multisensor Snow and Ice Mapping System (IMS), QuikSCAT, and Canadian Ice Service Database) show that, despite its relatively coarse spatial resolution, AMSR-E 18.7 GHz provides a viable means for monitoring of ice phenology on large northern lakes.
机译:检查了来自高级微波扫描辐射计-地球观测系统(AMSR-E)的亮度温度( T B )的时间序列,以确定两个最大的冰物候变量加拿大北部的大熊湖(GBL)和大奴湖(GSL)。比较了来自18.7、23.8、36.5和89.0 GHz通道(H和V极化)的 T B 测量值,以评估其检测冻结开始/融化的潜力两个湖泊的起跳日期和冰上/冰上日期。已发现18.7 GHz(H-pol)通道最适合估算这些冰的日期,冰盖的持续时间和无冰季节。提出了一种使用该通道的新算法,并将其用于映射七个冰季(2002a-2009年)的GBL和GSL上的所有冰物候变量。对每个变量在像素水平上的时空模式分析表明:(1)GBL上的冻结发生日期和冰上日期平均比GSL(每年的日(DY)318和333)平均早约一周GBL; DY 328和343(GSL); (2)GBL的冻结过程或冻结时间(从冻结开始到结冰)所花费的时间比GSL所花费的时间略长(平均约1周); (3)融化开始和结冰日期分别平均发生在GBL上一周和大约四个星期之后(GBL为DY 143和183; GSL为DY 135和157); (4)GBL的破裂过程或融化持续时间(从融化开始到结冰)平均持续约三周; (5)与南边的GSL相比,GBL的每个像素估计的冰盖持续时间平均要长三周左右。从其他卫星遥感产品(例如,NOAA交互式多传感器冰雪制图系统(IMS),QuikSCAT和加拿大冰服务数据库)得出的几种冰物候变量的日期比较显示,尽管空间分辨率相对较差,但AMSR- 18.7 GHz E提供了一种可行的手段来监视北部大型湖泊的冰物候。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号