...
首页> 外文期刊>The American journal of pathology. >Neutral Sphingomyelinase 2 (SMPD3) Deficiency in Mice Causes Chondrodysplasia with Unimpaired Skeletal Mineralization
【24h】

Neutral Sphingomyelinase 2 (SMPD3) Deficiency in Mice Causes Chondrodysplasia with Unimpaired Skeletal Mineralization

机译:小鼠中性神经鞘磷脂酶2(SMPD3)缺乏会导致软骨发育不良伴骨骼矿化不全。

获取原文
           

摘要

SMPD3 deficiency in the neutral sphingomyelinase ( Smpd3 sup -/- /sup) mouse results in a novel form of juvenile dwarfism, suggesting smpd3 is a polygenetic determinant of body height. SMPD3 controls homeostasis of the sphingomyelin cycle in the Golgi compartment, essential for membrane remodeling, initiating multiform vesicle formation and transport in the Golgi secretory pathway. Using the unbiased Smpd3 sup -/- /sup genetic model, this study shows that the perturbed Golgi secretory pathway of chondrocytes of the epiphyseal growth zone leads to dysproteostasis, skeletal growth inhibition, malformation, and chondrodysplasia, but showed unimpaired mineralization in primary and secondary enchondral ossification centers. This has been elaborated by biochemical analyses and immunohistochemistry of long bones of Smpd3 sup -/- /sup mice. A more precise definition of the microarchitecture and three-dimensional structure of the bone was shown by peripheral quantitative computed tomography, high-resolution microcomputed tomography, and less precisely by dual-energy X-ray absorptiometry for osteodensitometry. Ablation of the Smpd3 locus as part of a 980-kb deletion on chromosome 8 in the fro/fro mutant, generated by chemical mutagenesis, is held responsible for skeletal hypomineralization, osteoporosis, and multiple fractures of long bones, which are hallmarks of human osteogenesis imperfecta. The phenotype of the genetically unbiased Smpd3 sup -/- /sup mouse, described here, precludes the proposed role of Smpd3 as a candidate gene of human osteogenesis imperfecta, but suggests SMPD3?deficiency as the pathogenetic basis of a novel form of chondrodysplasia.
机译:中性鞘磷脂酶(Smpd3 -/-)小鼠的SMPD3缺乏导致一种新型的青少年侏儒症,表明smpd3是体高的多基因决定因素。 SMPD3控制高尔基体隔室中鞘磷脂循环的稳态,这对于膜重塑,启动多形式囊泡形成和在高尔基体分泌途径中的运输至关重要。使用无偏Smpd3 -/-遗传模型,该研究表明,epi骨生长区软骨细胞的高尔基分泌途径受到扰动导致软骨发育不良,骨骼生长抑制,畸形和软骨发育不良,但矿化未受损在初级和次级手软骨骨化中心。 Smpd3 -/-小鼠长骨的生化分析和免疫组织化学已对此进行了详细说明。通过外周定量计算机断层扫描,高分辨率微计算机断层扫描以及通过骨质密度测定的双能X线骨密度仪,可以更精确地定义骨骼的微结构和三维结构。通过化学诱变产生的fro / fro突变体,Smpd3基因座的切除是染色体8上980kb缺失的一部分,被认为是骨骼矿化不足,骨质疏松和长骨多处骨折的原因,这是人类成骨的标志不完美这里描述的遗传无偏的Smpd3 -/-小鼠的表型排除了Smpd3作为人类成骨不全症候选基因的拟议作用,但表明SMPD3?缺乏是新形式的致病基础。软骨发育不良。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号