首页> 外文期刊>PLoS One >Behavioral and Electrophysiological Effects of Cortical Microstimulation Parameters
【24h】

Behavioral and Electrophysiological Effects of Cortical Microstimulation Parameters

机译:皮质微刺激参数的行为和电生理效应

获取原文
           

摘要

Electrical microstimulation has been widely used to artificially activate neural circuits on fast time scales. Despite the ubiquity of its use, little is known about precisely how it activates neural pathways. Current is typically delivered to neural tissue in a manner that provides a locally balanced injection of positive and negative charge, resulting in negligible net charge delivery to avoid the neurotoxic effects of charge accumulation. Modeling studies have suggested that the most common approach, using a temporally symmetric current pulse waveform as the base unit of stimulation, results in preferential activation of axons, causing diffuse activation of neurons relative to the stimulation site. Altering waveform shape and using an asymmetric current pulse waveform theoretically reverses this bias and preferentially activates cell bodies, providing increased specificity. In separate studies, measurements of downstream cortical activation from sub-cortical microstimulation are consistent with this hypothesis, as are recent measurements of behavioral detection threshold currents from cortical microstimulation. Here, we compared the behavioral and electrophysiological effects of symmetric vs. asymmetric current waveform shape in cortical microstimulation. Using a goo-go behavioral task, we found that microstimulation waveform shape significantly shifts psychometric performance, where a larger current pulse was necessary when applying an asymmetric waveform to elicit the same behavioral response, across a large range of behaviorally relevant current amplitudes. Using voltage-sensitive dye imaging of cortex in anesthetized animals with simultaneous cortical microstimulation, we found that altering microstimulation waveform shape shifted the cortical activation in a manner that mirrored the behavioral results. Taken together, these results are consistent with the hypothesis that asymmetric stimulation preferentially activates cell bodies, albeit at a higher threshold, as compared to symmetric stimulation. These findings demonstrate the sensitivity of the pathway to varying electrical stimulation parameters and underscore the importance of designing electrical stimuli for optimal activation of neural circuits.
机译:电微刺激已被广泛用于在快速范围内人工激活神经回路。尽管它的使用无处不在,但对于它如何激活神经通路的确切了解却很少。电流通常以提供局部平衡的正负电荷注入的方式传递到神经组织,导致净电荷传递可忽略不计,从而避免了电荷积累的神经毒性作用。建模研究表明,最常见的方法是使用时间对称的电流脉冲波形作为刺激的基本单位,从而导致轴突的优先激活,从而导致神经元相对于刺激部位的扩散激活。从理论上说,改变波形形状和使用不对称电流脉冲波形会逆转此偏置并优先激活细胞体,从而提供更高的特异性。在单独的研究中,来自皮层下微刺激的下游皮层激活的测量结果与该假设一致,最近的测量来自皮层微刺激的行为检测阈值电流。在这里,我们比较了皮层微刺激中对称和不对称电流波形形状的行为和电生理效应。使用执行/不执行行为任务,我们发现微刺激波形形状显着改变了心理测量性能,其中在较大范围的行为相关电流幅度上应用非对称波形以引发相同的行为响应时,需要更大的电流脉冲。使用同时皮层微刺激的麻醉动物皮层的电压敏感染料成像,我们发现改变微刺激波形形状以反映行为结果的方式改变了皮层激活。两者合计,这些结果与以下假设相符:不对称刺激与对称刺激相比优先激活细胞体,尽管阈值更高。这些发现证明了该途径对变化的电刺激参数的敏感性,并强调了设计电刺激以最佳激活神经回路的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号