...
首页> 外文期刊>PLoS Medicine >The Impact of Hotspot-Targeted Interventions on Malaria Transmission in Rachuonyo South District in the Western Kenyan Highlands: A Cluster-Randomized Controlled Trial
【24h】

The Impact of Hotspot-Targeted Interventions on Malaria Transmission in Rachuonyo South District in the Western Kenyan Highlands: A Cluster-Randomized Controlled Trial

机译:热点针对性干预对肯尼亚西部高地拉丘尼约南部地区疟疾传播的影响:一项集群随机对照试验

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background Malaria transmission is highly heterogeneous, generating malaria hotspots that can fuel malaria transmission across a wider area. Targeting hotspots may represent an efficacious strategy for reducing malaria transmission. We determined the impact of interventions targeted to serologically defined malaria hotspots on malaria transmission both inside hotspots and in surrounding communities. Methods and Findings Twenty-seven serologically defined malaria hotspots were detected in a survey conducted from 24 June to 31 July 2011 that included 17,503 individuals from 3,213 compounds in a 100-km2 area in Rachuonyo South District, Kenya. In a cluster-randomized trial from 22 March to 15 April 2012, we randomly allocated five clusters to hotspot-targeted interventions with larviciding, distribution of long-lasting insecticide-treated nets, indoor residual spraying, and focal mass drug administration (2,082 individuals in 432 compounds); five control clusters received malaria control following Kenyan national policy (2,468 individuals in 512 compounds). Our primary outcome measure was parasite prevalence in evaluation zones up to 500 m outside hotspots, determined by nested PCR (nPCR) at baseline and 8 wk (16 June–6 July 2012) and 16 wk (21 August–10 September 2012) post-intervention by technicians blinded to the intervention arm. Secondary outcome measures were parasite prevalence inside hotpots, parasite prevalence in the evaluation zone as a function of distance from the hotspot boundary, Anopheles mosquito density, mosquito breeding site productivity, malaria incidence by passive case detection, and the safety and acceptability of the interventions. Intervention coverage exceeded 87% for all interventions. Hotspot-targeted interventions did not result in a change in nPCR parasite prevalence outside hotspot boundaries ( p ≥ 0.187). We observed an average reduction in nPCR parasite prevalence of 10.2% (95% CI ?1.3 to 21.7%) inside hotspots 8 wk post-intervention that was statistically significant after adjustment for covariates ( p = 0.024), but not 16 wk post-intervention ( p = 0.265). We observed no statistically significant trend in the effect of the intervention on nPCR parasite prevalence in the evaluation zone in relation to distance from the hotspot boundary 8 wk ( p = 0.27) or 16 wk post-intervention ( p = 0.75). Thirty-six patients with clinical malaria confirmed by rapid diagnostic test could be located to intervention or control clusters, with no apparent difference between the study arms. In intervention clusters we caught an average of 1.14 female anophelines inside hotspots and 0.47 in evaluation zones; in control clusters we caught an average of 0.90 female anophelines inside hotspots and 0.50 in evaluation zones, with no apparent difference between study arms. Our trial was not powered to detect subtle effects of hotspot-targeted interventions nor designed to detect effects of interventions over multiple transmission seasons. Conclusions Despite high coverage, the impact of interventions targeting malaria vectors and human infections on nPCR parasite prevalence was modest, transient, and restricted to the targeted hotspot areas. Our findings suggest that transmission may not primarily occur from hotspots to the surrounding areas and that areas with highly heterogeneous but widespread malaria transmission may currently benefit most from an untargeted community-wide approach. Hotspot-targeted approaches may have more validity in settings where human settlement is more nuclear. Trial registration ClinicalTrials.gov NCT01575613
机译:背景技术疟疾的传播高度异质性,产生了疟疾热点,可以推动更广泛地区的疟疾传播。瞄准热点可能是减少疟疾传播的有效策略。我们确定了针对血清学定义的疟疾热点地区的干预措施对热点内部和周围社区疟疾传播的影响。方法和结果2011年6月24日至7月31日进行的一项调查发现了27个血清学定义的疟疾热点,其中包括肯尼亚Rachuonyo南区100 km 2 地区3,213种化合物的17,503个人。在2012年3月22日至4月15日进行的整群随机试验中,我们将5个整群随机分配到针对热点地区的干预措施,包括幼虫杀灭,长效杀虫剂蚊帐的分发,室内残留喷洒和局域大规模药物管理(2,082个人432种化合物);根据肯尼亚的国家政策,五个控制区接受了疟疾控制(512化合物中有2468个人)。我们的主要结局指标是在基线外以及之后的8周(2012年6月16日至7月6日)和16周(2012年8月21日至9月10日)通过嵌套式PCR(nPCR)确定在热点外最远500 m的评估区内的寄生虫患病率,技术人员的干预对干预部门视而不见。次要结果指标是火锅内的寄生虫患病率,评估区内的寄生虫患病率与距热点边界的距离,按蚊蚊密度,蚊子繁殖地点的生产力,通过被动病例检测得出的疟疾发病率以及干预措施的安全性和可接受性之间的关系。所有干预措施的干预覆盖率均超过87%。以热点为目标的干预措施未导致热点边界以外的nPCR寄生虫患病率发生变化(p≥0.187)。我们观察到干预后8 wk热点内nPCR寄生虫患病率平均降低了10.2%(95%CI≤1.3到21.7%),在对协变量进行调整后(p = 0.024),统计学上具有统计学意义,但干预后16 wk没有统计学意义(p = 0.265)。我们没有观察到干预区对nPCR寄生虫患病率的影响与距热点边界8 wk(p = 0.27)或干预后16 wk(p = 0.75)的距离相关的统计学显着趋势。通过快速诊断测试确认的三十六例临床疟疾患者可以定位为干预或控制人群,研究组之间无明显差异。在干预组中,我们在热点内平均捕获了1.14只雌性按蚊,在评估区内捕获了0.47个;在对照群中,我们在热点内平均捕获了0.90只雌性按蚊,在评估区内平均捕获了0.50只,研究组之间没有明显差异。我们的试验没有能力检测针对热点的干预措施的微妙效果,也没有旨在检测多个传播季节的干预措施的效果。结论尽管覆盖率很高,但是针对疟疾媒介和人类感染的干预措施对nPCR寄生虫流行的影响是适度的,短暂的,并且仅限于目标热点地区。我们的研究结果表明,传播可能主要不是从热点地区向周围地区进行,疟疾高度异质性但分布广泛的地区目前可能会受益于无目标社区范围的方法。以热点为目标的方法在人类住区更具有核武器的环境中可能更具有效性。试用注册ClinicalTrials.gov NCT01575613

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号