...
首页> 外文期刊>PLoS Genetics >Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta
【24h】

Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta

机译:隐性成骨不全症的亲环素B KO小鼠模型中异常I型胶原的翻译后修饰和交联。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Cyclophilin B (CyPB), encoded by PPIB , is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib~(?/?) mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib~(?/?) fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties. Author Summary Osteogenesis imperfecta (OI), or brittle bone disease, is characterized by susceptibility to fractures from minimal trauma and growth deficiency. Deficiency of components of the collagen prolyl 3-hydroxylation complex, CRTAP, P3H1 and CyPB, cause recessive types VII, VIII and IX OI, respectively. We have previously shown that mutual protection within the endoplasmic reticulum accounts for the overlapping severe phenotype of patients with CRTAP and P3H1 mutations. However, the bone dysplasia in patients with CyPB deficiency is distinct in terms of phenotype and type I collagen biochemistry. Using a knock-out mouse model of type IX OI, we have demonstrated that CyPB is the major, although not unique, peptidyl prolyl cis-trans isomerase that catalyzes the rate-limiting step in collagen folding. CyPB is also required for activity of the collagen prolyl 3-hydroxylation complex; collagen α1(I) P986 modification is lost in the absence of CyPB. Unexpectedly, CyPB was found to also influence collagen helical lysyl hydroxylation in a tissue-, cell- and residue-specific manner. Thus CyPB facilitates collagen folding directly, but also indirectly regulates collagen hydroxylation, glycosylation, crosslinking and fibrillogenesis through its interactions with other collagen modifying enzymes in the endoplasmic reticulum.
机译:由PPIB编码的亲环蛋白B(CyPB)是一种ER驻留肽基-脯氨酰顺反异构酶(PPIase),其独立发挥功能并作为胶原脯氨酰3-羟基化复合物的组成部分。 CyPB被认为是催化胶原蛋白折叠中限速步骤的主要PPIase。 PPIB中的突变会导致隐性遗传性IX型成骨不全症,这是一种严重至致命的骨发育异常。为了研究CyPB在胶原蛋白折叠和翻译后修饰中的作用,我们产生了概括OI表型的Ppib〜(β/β)小鼠。敲除(KO)小鼠很小,股骨区域的骨矿物质密度(aBMD),单位体积的骨体积(BV / TV)和力学性能降低,并且股骨脆性增加。在蛋白质印迹中,皮肤,成纤维细胞,股骨和颅骨成骨细胞中不存在Ppib转录本,而KO成骨细胞和成纤维细胞中不存在CyPB。在KO细胞和组织中仅可检测到残留的(2-11%)胶原脯氨酰3-羟基化。在没有CyPB的情况下,胶原蛋白的折叠速度较慢,从而支持了胶原蛋白在折叠中的限速作用。但是,用环孢菌素A处理KO细胞会导致折叠进一步延迟,这表明可能存在另一种胶原PPIase。我们证实并扩展了CyPB在支持胶原赖氨酰羟化酶(LH1)活性中的作用。 Ppib-(β/β)成纤维细胞和成骨细胞胶原具有正常的总赖氨酰羟化,而观察到的胶原二糖基化增加。骨和成骨细胞I型胶原的液相色谱/质谱(LC / MS)分析显示,螺旋赖氨酸羟基化具有特定位置的变化,特别是螺旋交联残基K87的羟基化显着减少。因此,KO骨中二价和三价交联的不足羟基形式显着增加,导致总交联增加,螺旋羟基赖氨酸与赖氨酸的交联比降低。交联方式的改变与胶原蛋白在培养物中的沉积减少,组织中原纤维结构的改变以及骨强度的降低有关。这些研究表明,CyPB对胶原羟基化的间接调节作用,影响胶原糖基化,交联和原纤维形成的新结果,这些作用有助于维持骨骼的机械性能。作者摘要成骨不全症(OI)或脆性骨病的特征是易受最小创伤和生长不足的影响而骨折。胶原蛋白脯氨酰3-羟基化复合物,CRTAP,P3H1和CyPB的成分不足,分别导致隐性VII,VIII和IX OI型。先前我们已经表明,内质网内的相互保护可解释具有CRTAP和P3H1突变的患者的重叠严重表型。然而,就表型和I型胶原生物化学而言,CyPB缺乏症患者的骨发育异常是明显的。使用IX OI型的基因敲除小鼠模型,我们已经证明CyPB是主要的(尽管不是唯一的)肽基脯氨酰顺反异构酶,可催化胶原蛋白折叠中的限速步骤。 CyPB对于胶原蛋白脯氨酰3-羟基化复合物的活性也是必需的。在没有CyPB的情况下,胶原蛋白α1(I)P986修饰丢失。出乎意料的是,发现CyPB还以组织,细胞和残基特异性方式影响胶原螺旋赖氨酰羟基化。因此,CyPB直接促进胶原蛋白折叠,但也通过与内质网中其他胶原蛋白修饰酶的相互作用间接调节胶原蛋白的羟基化,糖基化,交联和原纤维形成。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号