首页> 外文期刊>PLoS Computational Biology >A General Framework for Thermodynamically Consistent Parameterization and Efficient Sampling of Enzymatic Reactions
【24h】

A General Framework for Thermodynamically Consistent Parameterization and Efficient Sampling of Enzymatic Reactions

机译:热力学上一致的参数化和酶反应有效采样的通用框架

获取原文
           

摘要

Kinetic models provide the means to understand and predict the dynamic behaviour of enzymes upon different perturbations. Despite their obvious advantages, classical parameterizations require large amounts of data to fit their parameters. Particularly, enzymes displaying complex reaction and regulatory (allosteric) mechanisms require a great number of parameters and are therefore often represented by approximate formulae, thereby facilitating the fitting but ignoring many real kinetic behaviours. Here, we show that full exploration of the plausible kinetic space for any enzyme can be achieved using sampling strategies provided a thermodynamically feasible parameterization is used. To this end, we developed a General Reaction Assembly and Sampling Platform (GRASP) capable of consistently parameterizing and sampling accurate kinetic models using minimal reference data. The former integrates the generalized MWC model and the elementary reaction formalism. By formulating the appropriate thermodynamic constraints, our framework enables parameterization of any oligomeric enzyme kinetics without sacrificing complexity or using simplifying assumptions. This thermodynamically safe parameterization relies on the definition of a reference state upon which feasible parameter sets can be efficiently sampled. Uniform sampling of the kinetics space enabled dissecting enzyme catalysis and revealing the impact of thermodynamics on reaction kinetics. Our analysis distinguished three reaction elasticity regions for common biochemical reactions: a steep linear region (0> ΔGr >-2 kJ/mol), a transition region (-2> ΔGr >-20 kJ/mol) and a constant elasticity region (ΔGr <-20 kJ/mol). We also applied this framework to model more complex kinetic behaviours such as the monomeric cooperativity of the mammalian glucokinase and the ultrasensitive response of the phosphoenolpyruvate carboxylase of Escherichia coli. In both cases, our approach described appropriately not only the kinetic behaviour of these enzymes, but it also provided insights about the particular features underpinning the observed kinetics. Overall, this framework will enable systematic parameterization and sampling of enzymatic reactions.
机译:动力学模型提供了理解和预测酶在不同扰动下的动态行为的手段。尽管它们具有明显的优势,但是经典参数化需要大量数据才能适合其参数。特别地,显示出复杂反应和调节(变构)机理的酶需要大量参数,因此通常由近似公式表示,从而促进拟合但忽略了许多真实的动力学行为。在这里,我们表明,只要使用热力学可行的参数化方法,就可以使用采样策略对任何酶的合理动力学空间进行全面探索。为此,我们开发了一种通用反应组装和采样平台(GRASP),该平台能够使用最少的参考数据对参数进行精确的动力学模型设定和采样。前者将广义的MWC模型与基本反应形式主义相结合。通过制定适当的热力学约束条件,我们的框架可对任何低聚酶动力学进行参数化,而无需牺牲复杂性或使用简化的假设。这种热力学安全的参数化依赖于参考状态的定义,在该参考状态下可以有效采样可行的参数集。动力学空间的均匀采样使解剖酶催化并揭示了热力学对反应动力学的影响。我们的分析区分了常见生化反应的三个反应弹性区域:一个陡峭的线性区域(0>ΔGr> -2 kJ / mol),一个过渡区域(-2>ΔGr> -20 kJ / mol)和一个恒定弹性区域(ΔGr <-20 kJ / mol)。我们还将这个框架应用于模拟更复杂的动力学行为,例如哺乳动物葡萄糖激酶的单体协同作用和大肠杆菌磷酸烯醇丙酮酸羧化酶的超灵敏响应。在这两种情况下,我们的方法不仅适当地描述了这些酶的动力学行为,而且还提供了有关所观察到的动力学基础的特定特征的见解。总体而言,该框架将使系统化参数化和酶促反应采样成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号