...
首页> 外文期刊>PLoS Computational Biology >De Novo Design and Experimental Characterization of Ultrashort Self-Associating Peptides
【24h】

De Novo Design and Experimental Characterization of Ultrashort Self-Associating Peptides

机译:从头设计和超短自缔合肽的实验表征

获取原文

摘要

Self-association is a common phenomenon in biology and one that can have positive and negative impacts, from the construction of the architectural cytoskeleton of cells to the formation of fibrils in amyloid diseases. Understanding the nature and mechanisms of self-association is important for modulating these systems and in creating biologically-inspired materials. Here, we present a two-stage de novo peptide design framework that can generate novel self-associating peptide systems. The first stage uses a simulated multimeric template structure as input into the optimization-based Sequence Selection to generate low potential energy sequences. The second stage is a computational validation procedure that calculates Fold Specificity and/or Approximate Association Affinity (K*association) based on metrics that we have devised for multimeric systems. This framework was applied to the design of self-associating tripeptides using the known self-associating tripeptide, Ac-IVD, as a structural template. Six computationally predicted tripeptides (Ac-LVE, Ac-YYD, Ac-LLE, Ac-YLD, Ac-MYD, Ac-VIE) were chosen for experimental validation in order to illustrate the self-association outcomes predicted by the three metrics. Self-association and electron microscopy studies revealed that Ac-LLE formed bead-like microstructures, Ac-LVE and Ac-YYD formed fibrillar aggregates, Ac-VIE and Ac-MYD formed hydrogels, and Ac-YLD crystallized under ambient conditions. An X-ray crystallographic study was carried out on a single crystal of Ac-YLD, which revealed that each molecule adopts a β-strand conformation that stack together to form parallel β-sheets. As an additional validation of the approach, the hydrogel-forming sequences of Ac-MYD and Ac-VIE were shuffled. The shuffled sequences were computationally predicted to have lower K*association values and were experimentally verified to not form hydrogels. This illustrates the robustness of the framework in predicting self-associating tripeptides. We expect that this enhanced multimeric de novo peptide design framework will find future application in creating novel self-associating peptides based on unnatural amino acids, and inhibitor peptides of detrimental self-aggregating biological proteins.
机译:自缔合是生物学中的一种普遍现象,可能会产生正面和负面的影响,从构造细胞的细胞骨架到淀粉样变性疾病中原纤维的形成。了解自我缔合的本质和机制对于调节这些系统和创造具有生物灵感的材料非常重要。在这里,我们提出了一个两阶段的从头设计肽的框架,可以产生新型的自缔合肽系统。第一阶段使用模拟的多聚体模板结构作为基于优化的序列选择的输入,以生成低势能序列。第二阶段是计算验证过程,该过程基于我们为多聚体系统设计的指标来计算折叠特异性和/或近似关联亲和力(K * association)。使用已知的自缔合三肽Ac-IVD作为结构模板,将该框架应用于自缔合三肽的设计。选择六个计算预测的三肽(Ac-LVE,Ac-YYD,Ac-LLE,Ac-YLD,Ac-MYD,Ac-VIE)进行实验验证,以说明这三个指标预测的自缔合结果。自缔合和电子显微镜研究表明,Ac-LLE形成珠状微结构,Ac-LVE和Ac-YYD形成纤维状聚集体,Ac-VIE和Ac-MYD形成水凝胶,Ac-YLD在环境条件下结晶。对Ac-YLD的单晶进行了X射线晶体学研究,结果表明,每个分子都具有β-链构象,该构象堆叠在一起形成平行的β-折叠。作为对该方法的进一步验证,对Ac-MYD和Ac-VIE的水凝胶形成序列进行了改组。通过计算预测改组后的序列具有较低的K *缔合值,并通过实验验证不会形成水凝胶。这说明了该框架在预测自缔合三肽中的鲁棒性。我们希望,这种增强的多聚从头肽设计框架将在基于非天然氨基酸和有害自聚集生物蛋白的抑制剂肽创建新型自缔合肽方面找到未来的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号