...
首页> 外文期刊>PLoS Computational Biology >Fast Synchronization of Ultradian Oscillators Controlled by Delta-Notch Signaling with Cis-Inhibition
【24h】

Fast Synchronization of Ultradian Oscillators Controlled by Delta-Notch Signaling with Cis-Inhibition

机译:Delta-Notch信号控制顺式抑制控制的超弧形振荡器的快速同步

获取原文

摘要

While it is known that a large fraction of vertebrate genes are under the control of a gene regulatory network (GRN) forming a clock with circadian periodicity, shorter period oscillatory genes like the Hairy-enhancer-of split (Hes) genes are discussed mostly in connection with the embryonic process of somitogenesis. They form the core of the somitogenesis-clock, which orchestrates the periodic separation of somites from the presomitic mesoderm (PSM). The formation of sharp boundaries between the blocks of many cells works only when the oscillators in the cells forming the boundary are synchronized. It has been shown experimentally that Delta-Notch (D/N) signaling is responsible for this synchronization. This process has to happen rather fast as a cell experiences at most five oscillations from its ‘birth’ to its incorporation into a somite. Computer simulations describing synchronized oscillators with classical modes of D/N-interaction have difficulties to achieve synchronization in an appropriate time. One approach to solving this problem of modeling fast synchronization in the PSM was the consideration of cell movements. Here we show that fast synchronization of Hes-type oscillators can be achieved without cell movements by including D/N cis-inhibition, wherein the mutual interaction of DELTA and NOTCH in the same cell leads to a titration of ligand against receptor so that only one sort of molecule prevails. Consequently, the symmetry between sender and receiver is partially broken and one cell becomes preferentially sender or receiver at a given moment, which leads to faster entrainment of oscillators. Although not yet confirmed by experiment, the proposed mechanism of enhanced synchronization of mesenchymal cells in the PSM would be a new distinct developmental mechanism employing D/N cis-inhibition. Consequently, the way in which Delta-Notch signaling was modeled so far should be carefully reconsidered.
机译:众所周知,大部分脊椎动物基因都处于基因调控网络(GRN)的控制之下,而基因调控网络形成的生物钟具有昼夜节律,但短周期振荡基因(如“毛增强子”分裂(Hes)基因)的讨论最多。与体发生的胚胎过程有关。它们形成了体细胞发育时钟的核心,该过程协调了体细胞与早熟中胚层(PSM)的周期性分离。仅当形成边界的单元中的振荡器同步时,许多单元的块之间才形成清晰的边界。实验表明,Delta-Notch(D / N)信令负责此同步。这个过程必须相当快地进行,因为一个单元格从“出生”到并入一个体节最多经历五次振荡。描述具有经典D / N交互模式的同步振荡器的计算机仿真很难在适当的时间内实现同步。解决PSM中快速同步建模问题的一种方法是考虑小区移动。在这里,我们显示通过包括D / N顺式抑制作用,可以在没有细胞运动的情况下实现Hes型振荡器的快速同步,其中在同一细胞中DELTA和NOTCH的相互作用导致配体对受体的滴定,因此只有一个某种分子占了上风。因此,发送器和接收器之间的对称性被部分破坏,并且一个单元在给定时刻优先成为发送器或接收器,这导致更快地夹带振荡器。尽管尚未通过实验证实,但所提出的增强PSM中间充质细胞同步性的机制将是采用D / N顺式抑制的新的独特发育机制。因此,应该仔细考虑到目前为止建模Delta-Notch信号的方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号