...
首页> 外文期刊>PLoS Computational Biology >Electrostatically Accelerated Encounter and Folding for Facile Recognition of Intrinsically Disordered Proteins
【24h】

Electrostatically Accelerated Encounter and Folding for Facile Recognition of Intrinsically Disordered Proteins

机译:静电加速遇到和折叠固有识别蛋白的简便识别

获取原文

摘要

Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs) that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012)) demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via “electrostatic steering” and at the same time promote “folding-competent” encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association kinetics for cellular signaling and regulation.
机译:实现容易的特异性识别对于参与细胞信号传导和调控的内在无序蛋白(IDP)至关重要。考虑到蛋白质折叠和扩散受限的蛋白质-蛋白质相遇的物理时间尺度,已表明对特定IDP识别的蛋白质折叠的频繁需求可能会导致动力学瓶颈。总的来说,人们对IDP如何克服这种潜在的动力学瓶颈以在信号传导和调节中有效发挥作用的了解很少。我们最近对细胞周期调节剂p27进行的计算和实验研究(Ganguly等人,J。Mol。Biol。(2012))证明,对IDP富集电荷施加的长期静电力可以通过“静电作用”加速蛋白质与蛋白质的接触转向”,同时推广“可胜任折叠”的遭遇拓扑,以提高遇难时IDP折叠的效率。在这里,我们进一步研究了耦合结合和折叠机制以及静电力在具有更复杂折叠拓扑的三种IDP配合物的形成中的作用。这些复合物的表面静电势缺乏像p27 / Cdk2 / cyclin A复合物所观察到的显着特征,这些特征直接表明静电力促进相遇时折叠的能力。尽管如此,使用基于拓扑的粗粒度模拟对于所有三个复合物始终预测出相似的静电加速碰撞和折叠机制。与我们先前对已知IDP络合物中电荷分布的分析一起,我们的结果支持了静电相互作用在促进有效的偶联结合和折叠以实现便捷的特异性识别中的普遍作用。这些结果还表明,IDP折叠拓扑,电荷特征以及耦合的结合和折叠机制可能会共同进化,至少部分是由于需要实现细胞信号传导和调控的快速缔合动力学所驱动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号