首页> 外文期刊>PLoS Computational Biology >The What and Where of Adding Channel Noise to the Hodgkin-Huxley Equations
【24h】

The What and Where of Adding Channel Noise to the Hodgkin-Huxley Equations

机译:将信道噪声添加到Hodgkin-Huxley方程的内容和地点

获取原文
获取外文期刊封面目录资料

摘要

Conductance-based equations for electrically active cells form one of the most widely studied mathematical frameworks in computational biology. This framework, as expressed through a set of differential equations by Hodgkin and Huxley, synthesizes the impact of ionic currents on a cell's voltage—and the highly nonlinear impact of that voltage back on the currents themselves—into the rapid push and pull of the action potential. Later studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations or their counterparts. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the equations of Hodgkin-Huxley type. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic equations of Hodgkin-Huxley type as well as to more modern models of ion channel dynamics. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly MATLAB simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.
机译:电活性细胞的基于电导的方程式是计算生物学中研究最广泛的数学框架之一。霍奇金和赫x黎通过一组微分方程表示的该框架将离子电流对电池电压的影响(以及该电压对电流本身的高度非线性影响)综合到动作的快速推动和拉动中。潜在。后来的研究证实,这些细胞动力学是由单独的离子通道组成的,它们的构象变化调节着每个离子电流的电导率。因此,物理化学中熟悉的动力学方程式是描述电导的自然环境。对于中小数量的通道,这些将预测电导的波动以及所产生动作电位的随机性。乍看之下,动力学方程式提供了比原始Hodgkin-Huxley方程式或类似方程式更为复杂(且维数更高)的描述。这促使人们进行了十多年的努力,通过将噪声项添加到Hodgkin-Huxley型方程中来捕获信道波动。这些方法中的许多方法虽然直观上吸引人,但与动力学方程相比会产生定量误差。正如最近所证明的,其他方法都是准确且相对简单的。我们回顾了什么有效,什么无效以及为什么,试图为霍奇金-赫克斯利类型的确定性方程以及更现代的离子通道动力学模型建立行之有效的结果的桥梁。因此,我们希望这篇评论能加快有关通道噪声如何调节电生理动力学和功能的新兴研究。我们在ModelDB网站(登录号138950)和http://www.amath.washington.edu/~etsb/tutorials.html上提供了这些随机形式的Hodgkin-Huxley方程的用户友好型MATLAB仿真代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号