首页> 外文期刊>PLoS Genetics >Bacterial Proliferation: Keep Dividing and Don't Mind the Gap
【24h】

Bacterial Proliferation: Keep Dividing and Don't Mind the Gap

机译:细菌扩散:保持分裂,不要留意差距

获取原文
获取外文期刊封面目录资料

摘要

DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question remains of what happens to this gap in vivo . Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured. Author Summary DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication, thus challenging genome integrity. Two DDT mechanisms have previously been described: error prone Translesion Synthesis operated by specialized DNA polymerases and error free bypass that uses the information of the sister chromatid to bypass the lesion. In this work, we set up a novel genetic system that allows to insert a single DNA blocking lesion in the chromosome of a living cell and to visualize the exchange of genetic information between the undamaged and the damaged strand. Using this system, we showed in vivo that the replication fork is able to re-prime downstream of the lesion, leaving a gap. This gap is mostly filled in by the error free pathway through the RecA homologous recombination mechanism. We show that when the gap is left unrepaired, cells are still able to divide by losing the damaged chromatid, which evidences the lack of a stringent cell division checkpoint system.
机译:DNA损伤耐受(DDT)机制有助于处理无法修复的DNA损伤,这些损伤会阻止复制并挑战基因组完整性。先前的体外研究表明,细菌复制酶能够重新引发DNA损伤的下游,留下单链DNA缺口。问题仍然是体内这种差距会发生什么。在活细胞的染色体中插入单个病变后,我们显示此间隙主要由同源的定向间隙修复(RecA依赖)填补。当细胞无法修复该缺口时,或同源重组受损时,细胞仍然能够分裂,从而导致受损染色单体的丢失,这表明细菌缺乏严格的细胞分裂检查点机制。因此,以损失一种染色单体为代价,确保了细胞存活和增殖。作者摘要DNA损伤耐受(DDT)机制有助于处理阻止复制的未修复DNA损伤,从而挑战基因组完整性。先前已经描述了两种DDT机制:由专门的DNA聚合酶操作的易错转移合成和使用姐妹染色单体信息绕过病变的无错旁路。在这项工作中,我们建立了一个新的遗传系统,该系统允许在活细胞的染色体中插入单个DNA阻断病变,并可视化未损坏和受损链之间的遗传信息交换。使用该系统,我们在体内证明了复制叉能够在病灶下游重新灌注,从而留出空隙。通过RecA同源重组机制的无错途径主要填补了这一空白。我们表明,当缺口未修复时,细胞仍然能够通过丢失受损的染色单体而分裂,这表明缺乏严格的细胞分裂检查点系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号