...
首页> 外文期刊>PLoS Computational Biology >Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity
【24h】

Coupling Protein Side-Chain and Backbone Flexibility Improves the Re-design of Protein-Ligand Specificity

机译:蛋白质侧链和骨干柔韧性的结合改善了蛋白质-配体特异性的重新设计

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Interactions between small molecules and proteins play critical roles in regulating and facilitating diverse biological functions, yet our ability to accurately re-engineer the specificity of these interactions using computational approaches has been limited. One main difficulty, in addition to inaccuracies in energy functions, is the exquisite sensitivity of protein–ligand interactions to subtle conformational changes, coupled with the computational problem of sampling the large conformational search space of degrees of freedom of ligands, amino acid side chains, and the protein backbone. Here, we describe two benchmarks for evaluating the accuracy of computational approaches for re-engineering protein-ligand interactions: (i) prediction of enzyme specificity altering mutations and (ii) prediction of sequence tolerance in ligand binding sites. After finding that current state-of-the-art “fixed backbone” design methods perform poorly on these tests, we develop a new “coupled moves” design method in the program Rosetta that couples changes to protein sequence with alterations in both protein side-chain and protein backbone conformations, and allows for changes in ligand rigid-body and torsion degrees of freedom. We show significantly increased accuracy in both predicting ligand specificity altering mutations and binding site sequences. These methodological improvements should be useful for many applications of protein – ligand design. The approach also provides insights into the role of subtle conformational adjustments that enable functional changes not only in engineering applications but also in natural protein evolution.
机译:小分子与蛋白质之间的相互作用在调节和促进多种生物学功能中起着关键作用,但是我们使用计算方法准确地重新设计这些相互作用的特异性的能力受到限制。除能量功能不准确外,主要困难之一是蛋白质-配体相互作用对微妙的构象变化的灵敏性,以及对配体,氨基酸侧链的自由度的大构象搜索空间进行采样的计算问题,和蛋白质骨架。在这里,我们描述了两个基准,用于评估重新设计蛋白质-配体相互作用的计算方法的准确性:(i)预测改变突变的酶特异性和(ii)预测配体结合位点的序列耐受性。在发现当前最新的“固定主干”设计方法在这些测试中表现不佳后,我们在Rosetta程序中开发了一种新的“耦合动作”设计方法,该方法将蛋白质序列的变化与两个蛋白质侧面的变化相结合。链和蛋白质骨架构象,并允许配体刚体和扭转自由度的变化。我们在预测配体特异性改变突变和结合位点序列中显示出显着提高的准确性。这些方法上的改进对于蛋白质-配体设计的许多应用应该是有用的。该方法还提供了对微妙的构象调节作用的见解,这些构象调节不仅在工程应用中而且在天然蛋白质进化中都可以实现功能上的改变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号