...
首页> 外文期刊>PLoS Computational Biology >Gradients and Modulation of K+ Channels Optimize Temporal Accuracy in Networks of Auditory Neurons
【24h】

Gradients and Modulation of K+ Channels Optimize Temporal Accuracy in Networks of Auditory Neurons

机译:K +通道的梯度和调制可优化听觉神经元网络中的时间准确性。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Accurate timing of action potentials is required for neurons in auditory brainstem nuclei to encode the frequency and phase of incoming sound stimuli. Many such neurons express “high threshold” Kv3-family channels that are required for firing at high rates (>~200 Hz). Kv3 channels are expressed in gradients along the medial-lateral tonotopic axis of the nuclei. Numerical simulations of auditory brainstem neurons were used to calculate the input-output relations of ensembles of 1–50 neurons, stimulated at rates between 100–1500 Hz. Individual neurons with different levels of potassium currents differ in their ability to follow specific rates of stimulation but all perform poorly when the stimulus rate is greater than the maximal firing rate of the neurons. The temporal accuracy of the combined synaptic output of an ensemble is, however, enhanced by the presence of gradients in Kv3 channel levels over that measured when neurons express uniform levels of channels. Surprisingly, at high rates of stimulation, temporal accuracy is also enhanced by the occurrence of random spontaneous activity, such as is normally observed in the absence of sound stimulation. For any pattern of stimulation, however, greatest accuracy is observed when, in the presence of spontaneous activity, the levels of potassium conductance in all of the neurons is adjusted to that found in the subset of neurons that respond better than their neighbors. This optimization of response by adjusting the K+ conductance occurs for stimulus patterns containing either single and or multiple frequencies in the phase-locking range. The findings suggest that gradients of channel expression are required for normal auditory processing and that changes in levels of potassium currents across the nuclei, by mechanisms such as protein phosphorylation and rapid changes in channel synthesis, adapt the nuclei to the ongoing auditory environment.
机译:对于听觉脑干核中的神经元,需要准确的动作电位计时,以编码传入声音刺激的频率和相位。许多这样的神经元表达“高阈值” Kv3家族通道,这些通道是高频率(>〜200 Hz)发射所需的。 Kv3通道以沿着细胞核的内侧-外侧tonotopic轴的梯度表示。使用听觉脑干神经元的数值模拟来计算1–50个神经元的集合的输入输出关系,并以100–1500 Hz的频率进行刺激。具有不同钾电流水平的单个神经元遵循特定刺激速率的能力不同,但是当刺激速率大于神经元的最大放电速率时,所有神经元的表现均较差。但是,与神经元表达均匀通道水平时相比,Kv3通道水平中存在梯度,从而增强了合奏的组合突触输出的时间精度。出人意料的是,在高刺激速率下,通过随机自发活动的出现,时间准确性也得到了增强,例如在没有声音刺激的情况下通常会观察到的。但是,对于任何形式的刺激,当在存在自发活动的情况下,将所有神经元中钾电导的水平调整为对神经元的反应优于其邻居时,发现其准确性最高。通过调整K +电导的这种响应优化可以在锁相范围内包含单个或多个频率的激励模式下发生。这些发现表明,正常听觉处理需要通道表达的梯度,并且通过蛋白质磷酸化和通道合成快速变化等机制,整个细胞核中钾电流水平的变化会使细胞核适应正在进行的听觉环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号