...
首页> 外文期刊>PLoS Computational Biology >A Common Model for Cytokine Receptor Activation: Combined Scissor-Like Rotation and Self-Rotation of Receptor Dimer Induced by Class I Cytokine
【24h】

A Common Model for Cytokine Receptor Activation: Combined Scissor-Like Rotation and Self-Rotation of Receptor Dimer Induced by Class I Cytokine

机译:细胞因子受体激活的通用模型:I类细胞因子诱导的类似剪刀的旋转和受体二聚体的自转结合。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The precise mechanism by which the binding of a class I cytokine to the extracellular domain of its corresponding receptor transmits a signal through the cell membrane remains unclear. Receptor activation involves a cytokine-receptor complex with a 1∶2 stoichiometry. Previously we used our transient-complex theory to calculate the rate constant of the initial cytokine-receptor binding to form a 1∶1 complex. Here we computed the binding pathway leading to the 1∶2 activation complex. Three cytokine systems (growth hormone, erythropoietin, and prolactin) were studied, and the focus was on the binding of the extracellular domain of the second receptor molecule after forming the 1∶1 complex. According to the transient-complex theory, translational and rotation diffusion of the binding entities bring them together to form a transient complex, which has near-native relative separation and orientation but not the short-range specific native interactions. Subsequently conformational rearrangement leads to the formation of the native complex. We found that the changes in relative orientations between the two receptor molecules from the transient complex to the 1∶2 native complex are similar for the three cytokine-receptor systems. We thus propose a common model for receptor activation by class I cytokines, involving combined scissor-like rotation and self-rotation of the two receptor molecules. Both types of rotations seem essential: the scissor-like rotation separates the intracellular domains of the two receptor molecules to make room for the associated Janus kinase molecules, while the self-rotation allows them to orient properly for transphosphorylation. This activation model explains a host of experimental observations. The transient-complex based approach presented here may provide a strategy for designing antagonists and prove useful for elucidating activation mechanisms of other receptors.
机译:I类细胞因子与其对应受体的胞外域结合的确切机制尚不清楚。受体激活涉及一种化学计量比为1∶2的细胞因子-受体复合物。以前,我们使用瞬态复合物理论来计算初始细胞因子-受体结合形成1∶1复合物的速率常数。在这里,我们计算了导致1∶2激活复合物的结合途径。研究了三种细胞因子系统(生长激素,促红细胞生成素和催乳激素),其重点是形成1∶1复合物后第二受体分子胞外域的结合。根据瞬态复合物理论,结合实体的平移和旋转扩散将它们结合在一起形成一个瞬态复合物,该复合物具有近乎天然的相对分离和取向,但不具有短程特定的天然相互作用。随后构象重排导致天然复合物的形成。我们发现,对于三种细胞因子受体系统,两个受体分子之间的相对方向变化从瞬时复合物到1∶2天然复合物是相似的。因此,我们提出了通过I类细胞因子激活受体的通用模型,涉及两个受体分子的联合剪刀状旋转和自旋转。两种类型的旋转似乎都是必不可少的:剪刀状旋转将两个受体分子的胞内结构域分开,为相关的Janus激酶分子腾出空间,而自旋转则使它们能够正确定向以进行转磷酸化。该激活模型解释了许多实验观察。本文介绍的基于瞬态复合物的方法可提供设计拮抗剂的策略,并被证明可用于阐明其他受体的激活机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号