...
首页> 外文期刊>PLoS Computational Biology >Multistationary and Oscillatory Modes of Free Radicals Generation by the Mitochondrial Respiratory Chain Revealed by a Bifurcation Analysis
【24h】

Multistationary and Oscillatory Modes of Free Radicals Generation by the Mitochondrial Respiratory Chain Revealed by a Bifurcation Analysis

机译:通过分叉分析揭示线粒体呼吸链产生自由基的多平稳和振荡模式

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The mitochondrial electron transport chain transforms energy satisfying cellular demand and generates reactive oxygen species (ROS) that act as metabolic signals or destructive factors. Therefore, knowledge of the possible modes and bifurcations of electron transport that affect ROS signaling provides insight into the interrelationship of mitochondrial respiration with cellular metabolism. Here, a bifurcation analysis of a sequence of the electron transport chain models of increasing complexity was used to analyze the contribution of individual components to the modes of respiratory chain behavior. Our algorithm constructed models as large systems of ordinary differential equations describing the time evolution of the distribution of redox states of the respiratory complexes. The most complete model of the respiratory chain and linked metabolic reactions predicted that condensed mitochondria produce more ROS at low succinate concentration and less ROS at high succinate levels than swelled mitochondria. This prediction was validated by measuring ROS production under various swelling conditions. A numerical bifurcation analysis revealed qualitatively different types of multistationary behavior and sustained oscillations in the parameter space near a region that was previously found to describe the behavior of isolated mitochondria. The oscillations in transmembrane potential and ROS generation, observed in living cells were reproduced in the model that includes interaction of respiratory complexes with the reactions of TCA cycle. Whereas multistationarity is an internal characteristic of the respiratory chain, the functional link of respiration with central metabolism creates oscillations, which can be understood as a means of auto-regulation of cell metabolism.
机译:线粒体电子传输链转换满足细胞需求的能量,并产生活性氧(ROS),这些氧作为代谢信号或破坏性因子。因此,了解影响ROS信号传导的电子传输的可能模式和分叉的知识,为线粒体呼吸与细胞代谢之间的相互关系提供了见识。在这里,对复杂性不断提高的电子传输链模型序列的分叉分析被用来分析单个成分对呼吸链行为模式的贡献。我们的算法将模型构造为大型常微分方程系统,描述了呼吸系统复合物氧化还原态分布的时间演化。呼吸链和相关代谢反应的最完整模型预测,与膨胀的线粒体相比,浓缩的线粒体在低琥珀酸浓度下产生更多的ROS,在高琥珀酸水平下产生更少的ROS。通过在各种溶胀条件下测量ROS的产量,可以验证这一预测。数值分叉分析揭示了定性不同类型的多稳态行为和参数空间附近区域的持续振荡,该区域先前被发现可描述孤立的线粒体的行为。在模型中复制了在活细胞中观察到的跨膜电位和ROS产生的振荡,该模型包括呼吸道复合物与TCA循环反应的相互作用。多平稳性是呼吸链的内部特征,而呼吸与中枢新陈代谢的功能性联系会产生振荡,这可以理解为细胞代谢自动调节的一种手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号