...
首页> 外文期刊>PLoS Computational Biology >Lobe Specific Ca 2+ -Calmodulin Nano-Domain in Neuronal Spines: A Single Molecule Level Analysis
【24h】

Lobe Specific Ca 2+ -Calmodulin Nano-Domain in Neuronal Spines: A Single Molecule Level Analysis

机译:神经元棘中的叶特异性Ca 2+-钙调蛋白纳米域:单分子水平分析。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Calmodulin (CaM) is a ubiquitous Ca2+ buffer and second messenger that affects cellular function as diverse as cardiac excitability, synaptic plasticity, and gene transcription. In CA1 pyramidal neurons, CaM regulates two opposing Ca2+-dependent processes that underlie memory formation: long-term potentiation (LTP) and long-term depression (LTD). Induction of LTP and LTD require activation of Ca2+-CaM-dependent enzymes: Ca2+/CaM-dependent kinase II (CaMKII) and calcineurin, respectively. Yet, it remains unclear as to how Ca2+ and CaM produce these two opposing effects, LTP and LTD. CaM binds 4 Ca2+ ions: two in its N-terminal lobe and two in its C-terminal lobe. Experimental studies have shown that the N- and C-terminal lobes of CaM have different binding kinetics toward Ca2+ and its downstream targets. This may suggest that each lobe of CaM differentially responds to Ca2+ signal patterns. Here, we use a novel event-driven particle-based Monte Carlo simulation and statistical point pattern analysis to explore the spatial and temporal dynamics of lobe-specific Ca2+-CaM interaction at the single molecule level. We show that the N-lobe of CaM, but not the C-lobe, exhibits a nano-scale domain of activation that is highly sensitive to the location of Ca2+ channels, and to the microscopic injection rate of Ca2+ ions. We also demonstrate that Ca2+ saturation takes place via two different pathways depending on the Ca2+ injection rate, one dominated by the N-terminal lobe, and the other one by the C-terminal lobe. Taken together, these results suggest that the two lobes of CaM function as distinct Ca2+ sensors that can differentially transduce Ca2+ influx to downstream targets. We discuss a possible role of the N-terminal lobe-specific Ca2+-CaM nano-domain in CaMKII activation required for the induction of synaptic plasticity.
机译:钙调蛋白(CaM)是一种普遍存在的Ca2 +缓冲液和第二信使,可影响细胞功能,如心脏兴奋性,突触可塑性和基因转录。在CA1锥体神经元中,CaM调节记忆形成基础的两个相反的Ca2 +依赖性过程:长期增强(LTP)和长期抑郁(LTD)。 LTP和LTD的诱导需要激活Ca2 + -CaM依赖的酶:Ca2 + / CaM依赖的激酶II(CaMKII)和钙调神经磷酸酶。然而,关于Ca2 +和CaM如何产生LTP和LTD这两个相反的作用,目前还不清楚。 CaM结合4个Ca2 +离子:两个位于N末端波瓣,两个位于C末端波瓣。实验研究表明,CaM的N和C末端叶片对Ca2 +及其下游靶标具有不同的结合动力学。这可能表明CaM的每个波瓣对Ca2 +信号模式的反应都不同。在这里,我们使用一种新颖的基于事件驱动的基于粒子的蒙特卡洛模拟和统计点模式分析,以探索单分子水平上特定于叶的Ca2 + -CaM相互作用的时空动态。我们显示,CaM的N瓣,而不是C瓣,显示出一个纳米级的激活域,该域对Ca2 +通道的位置以及对Ca2 +离子的微观注入速率高度敏感。我们还证明了Ca2 +饱和是通过两种不同的途径发生的,具体取决于Ca2 +的注入速率,一种途径由N末端叶为主,另一种途径由C末端叶为主。综上所述,这些结果表明,CaM的两个叶起着截然不同的Ca2 +传感器的作用,可以将Ca2 +的流入量差异化地传导至下游目标。我们讨论了诱导突触可塑性所需的CaMKII激活中的N末端叶特异性Ca2 + -CaM纳米域的可能作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号